

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SIGNAL DETECTION AND FRAME SYNCHRONIZATION
OF MULTIPLE WIRELESS NETWORKING WAVEFORMS

by

Keith C. Howland

September 2007

 Thesis Advisor: Murali Tummala
 Co-Advisor: John McEachen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Signal Detection and Frame Synchronization of
Multiple Wireless Networking Waveforms
6. AUTHOR(S) Keith C. Howland

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis investigates the detection, classification, frame synchronization, and demodulation of wireless networking
waveforms by a digital receiver. The approach is to develop detection thresholds for wireless networking signals based upon the
probability density functions of the signal present or signal absent scenarios. A Neyman-Pearson test is applied to determine
decision thresholds and the associated probabilities of detection. With a chosen threshold, MATLAB simulations are run utilizing
models developed to generate and receive IEEE 802.11a, IEEE 802.16, and IEEE 802.11b signals in multipath channels
characterized by Rayleigh fading. Algorithms are developed for frame synchronization for each of the three waveforms. The
probability of signal detection, successful frame synchronization, and the bit error rates of the received packet header and data are
calculated. The results show that, even in Rayleigh fading environments at low signal to noise levels, these three waveforms can
be distinguished in a digital receiver. Further, the results show that significant signal information can be gathered on these wireless
networking waveforms, even when the entire signal cannot be demodulated due to low signal to noise ratios.

15. NUMBER OF
PAGES

191

14. SUBJECT TERMS
Signal Detection, Frame Synchronization, Orthogonal Frequency Division Multiplexing (OFDM),
IEEE 802.11a, IEEE 802.16
 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SIGNAL DETECTION AND FRAME SYNCHRONIZATION OF MULTIPLE
WIRELESS NETWORKING WAVEFORMS

Keith C. Howland

Lieutenant Commander, United States Navy
B.A., Cornell University, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Keith Howland

Approved by: Professor Murali Tummala
Thesis Advisor

Professor John McEachen
Co-Advisor

Professor Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis investigates the detection, classification, frame synchronization, and

demodulation of wireless networking waveforms by a digital receiver. The approach is to

develop detection thresholds for wireless networking signals based upon the probability

density functions of the signal present or signal absent scenarios. A Neyman-Pearson test

is applied to determine decision thresholds and the associated probabilities of detection.

With a chosen threshold, MATLAB simulations are run utilizing models developed to

generate and receive IEEE 802.11a, IEEE 802.16, and IEEE 802.11b signals in multipath

channels characterized by Rayleigh fading. Algorithms are developed for frame

synchronization for each of the three waveforms. The probability of signal detection,

successful frame synchronization, and the bit error rates of the received packet header

and data are calculated. The results show that, even in Rayleigh fading environments at

low signal to noise levels, these three waveforms can be distinguished in a digital

receiver. Further, the results show that significant signal information can be gathered on

these wireless networking waveforms, even when the entire signal cannot be

demodulated due to low signal to noise ratios.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE AND APPROACH ...2
C. RELATED WORK ..3
D. ORGANIZATION ...4

II. BACKGROUND ..5
A. RADIO CHANNEL ...5
B. OFDM IN A MULTIPATH CHANNEL ...8

III. SIGNAL DETECTION, CLASSIFICATION & SYNCHRONIZATION13
A. DETECTION AND CLASSIFICATION ..13

1. IEEE 802.11a and IEEE 802.16 Preambles15
a. IEEE 802.11a Preambles..16
b. IEEE 802.16 Preambles..19

2. Cross-correlation of IEEE 802.11a and IEEE 802.16 Preambles..20
3. Decision Statistics...21

a. IEEE 802.11a Receiver Cross-Correlation Decision
Statistic when Preamble is not Present23

b. IEEE 802.11a Receiver Cross-Correlation Decision
Statistic when Preamble Signal is Present27

4. Decision Thresholds ...30
B. FRAME SYNCHRONIZATION..34
C. SUMMARY ..38

IV. SIMULATION MODEL AND RESULTS ..41
A. SIMULATION MODEL ...41

1. Signal Generation...42
a. IEEE 802.11a..42
b. IEEE 802.16 ..44
c. IEEE 802.11b..45

2. Channel ...46
3. Detection ...47
4. Synchronization..48
5. Demodulation ...48

B. RESULTS ...53
1. IEEE 802.11a..54
2. IEEE 802.11b..59
3. IEEE 802.16 ..61
4. Noise ..62
5. Summary...63

V. CONCLUSIONS ..67
A. SUMMARY OF THE WORK DONE ...67

 viii

B. SIGNIFICANT RESULTS..67
C. FUTURE WORK...68

APPENDIX...69

LIST OF REFERENCES..167

INITIAL DISTRIBUTION LIST ...169

 ix

LIST OF FIGURES

Figure 1. Single Receiver Block Diagram for Multiple Wireless Networking
Waveform Detection and Synchronization.. xviii

Figure 2. Multipath Channel Environment..6
Figure 3. Channel Impulse Response with Intersymbol Interference.8
Figure 4. Ideal, Normalized Power Spectral Density Plot of Three Orthogonal

Signals..10
Figure 5. Correlator-based Signal Detector...13
Figure 6. Conditional Probability Density Curves Showing the Areas Defining dP ,

fP , and mP ...15
Figure 7. IEEE 802.11a Short and Long Preambles (From Ref [1])...............................17
Figure 8. Cross-correlation of the IEEE 802.11a Preamble with (a) Short Preamble

Correlator and (b) Long Preamble Correlator..18
Figure 9. IEEE 802.16 Downlink Preamble (From [12])..19
Figure 10. Cross-correlation of the IEEE 802.16 Preamble with (a) First Preamble

Correlator and (b) Second Preamble Correlator. ...20
Figure 11. Preamble Cross-correlation: (a) IEEE 802.11a Short Preamble Correlator

Output with IEEE 802.16 Downlink Preamble Input; (b) IEEE 802.16
First Preamble Correlator Output with IEEE 802.11a Preamble Input.21

Figure 12. Theoretical and Simulated Average Mean Correlation Values with No
Preamble Signal Present for the Autocorrelation and Cross-correlation
Methods in an AWGN Channel...25

Figure 13. Average Variance of the Autocorrelation and Cross-correlation Methods
with No Preamble Signal Present in an AWGN Channel................................26

Figure 14. Average Mean of the Autocorrelation and Cross-correlation Methods
When an IEEE 802.11a Preamble is Present in an AWGN Channel...............28

Figure 15. Cross-Correlation with IEEE 802.11a Short Preamble at 0 dB SNR.29
Figure 16. Average Variance of Auto and Cross-correlation Methods When the IEEE

802.11a Preamble is Present in an AWGN Channel..30
Figure 17. Theoretical Probability of False Alarm as a Function of Decision

Threshold for Correlation Window Lengths of 16, 64, and 128......................31
Figure 18. Probability of Detection as a Function of Decision Threshold for

Correlation Window Length 16 in an AWGN Channel...................................32
Figure 19. Theoretical Receiver Operating Characteristic Curve for an IEEE 802.11a

Receiver using Autocorrelation for Signal Detection in an AWGN
Channel. ...33

Figure 20. Theoretical Receiver Operating Characteristic Curve for an IEEE 802.16
Receiver using Autocorrelation for Signal Detection in an AWGN
Channel. ...34

Figure 21. OFDM Signal Frame Format. ..35
Figure 22. OFDM Symbols without Proper Frame Synchronization................................35

 x

Figure 23. Autocorrelation Decision Statistic for IEEE 802.11a Short Preamble at 20
dB...36

Figure 24. Time Synchronization Comparison of the Autocorrelation and Cross-
Correlation Techniques in a Rayleigh Channel with RMS Delay Spread of

75 10−× s Averaged over a Range of SNR values from 0 to 30 dB.38
Figure 25. Simulation Set Up. ...42
Figure 26. IEEE 802.11a Baseband Transmitter Model. ..43
Figure 27. IEEE 802.16 Baseband Transmitter Model. ..45
Figure 28. IEEE 802.11b Baseband Transmitter Model. ..46
Figure 29. Long PLCP PPDU Format (from Ref [2]). ..48
Figure 30. Channel Frequency Response for Rayleigh Channel with RMS Delay

Spread of 75 10−× s and a SNR of 20 dB..50
Figure 31. Channel Estimation: (a) Uncorrected and (b) Corrected 16-QAM Signal

from a Rayleigh Channel with RMS Delay Spread of 85 10−× s and a SNR
of 20 dB..51

Figure 32. IEEE 802.11a Baseband Receiver Block Diagram..52
Figure 33. PPDU Frame Format (From Ref [1])...53
Figure 34. IEEE 802.16 Baseband Receiver Block Diagram..53
Figure 35. Probability of Detection in a Rayleigh Channel with an RMS Delay

Spread of 85 10−× s and a detection threshold of 0.3..55
Figure 36. Probability of Correct Parity Bit in a Rayleigh Channel with RMS Delay

Spread of 85 10−× s and a Detection Threshold of 0.3.56
Figure 37. Probability of IEEE 802.11b Signal Detection and Correct Parity Bit

Check in a Rayleigh Channel with RMS Delay Spread of 85 10−× s.60
Figure 38. Probability of IEEE 802.16 Signal Detection and Correct Parity Bit Check

in a Rayleigh Channel with RMS Delay Spread of 85 10−× s.62
Figure 39. MATLAB Code Function Call Signal Flow for Simulations69

 xi

LIST OF TABLES

Table 1. IEEE 802.11a Timing-related parameters (from Ref [1])..................................9
Table 2. Short Preamble Time Domain Sequence Samples...17
Table 3. Maximum Cross-correlation Values between IEEE 802.11a and IEEE

802.16 Preamble Symbols. ..21
Table 4. Rate Dependent Parameters (From Ref [1]). ...44
Table 5. IEEE 802.11a Frame Demodulation Results in a Rayleigh Channel with

RMS Delay spread of 75 10−× s and Detection Threshold = 0.3.58
Table 6. Received Data Rate Value When the Packet Header Parity Check Failed

and the Actual Data Rate Value Sent Was 12..58
Table 7. IEEE 802.11b Signal Detection and Demodulation Results in a Rayleigh

Channel. ...61
Table 8. Probability of Detection of IEEE 802.11a, IEEE 802.11b, and IEEE

802.16 Signals by a Digital Receiver with a SNR of 3 dB.64
Table 9. Probability of Detection of IEEE 802.11a, IEEE 802.11b, and IEEE

802.16 Signals by a Digital Receiver with a SNR of 7 dB.64
Table 10. Probability of Detection of IEEE 802.11a, IEEE 802.11b, and IEEE

802.16 Signals by a Digital Receiver with a SNR of 15 dB.64
Table 11. Frame Offset Results for all Three Signals in a Rayleigh Channel.65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND/OR ABBREVIATIONS

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

CP Cyclic Prefix

CRC Cyclic Redundancy Check

dB Decibel

ICI Interchannel Interference

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers

ISI Intersymbol Interference

MAC Medium Access Control

MPDU MAC Protocol Data Unit

OFDM Orthogonal Frequency Division Multiplexing

PDF Probability Density Function

PLCP Physical Layer Convergence Procedure

PPDU PLCP Packet Data Unit

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

ROC Receiver Operating Characteristic

rms Root Mean Square

SNR Signal to Noise Ratio

WLAN Wireless Local Area Network

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

With the emergence of network-centric warfare, the goal of military wireless

communications is to network mobile units together so that data can be shared while

using bandwidth efficiently. As the demand grows to network more diverse units, each

node requires the ability to communicate on different frequencies with different

waveforms. Packet-based wireless networks, utilizing digital communication techniques,

have emerged as an effective implementation of the network-centric warfare model.

With the rapid deployment of the IEEE 802.11x standards, the commercial sector has

already recognized the advantages of packet-based, wireless networking and the need for

fast, bandwidth-efficient systems. Furthermore, the commercial sector is also

recognizing the demand for a single user to be able to seamlessly switch between the

diverse array of networks available and take advantage of the fastest connection.

Similarly, a military user will wish to communicate over several different links, e.g., one

for command and control data and three for sensor data.

In both the military and commercial markets, the need arises for the receiver to be

able to detect and classify different wireless signals. This could be accomplished with a

separate receiver for each waveform. This approach would require an ever-growing

footprint and would not be practical for the ability to communicate on many different

links. A better approach is a single, air interface capable of sampling the different signals

at the required sampling rates, and a digital signal processing backend capable of

detecting and demodulating the different waveforms.

The objective of this thesis is to investigate signal detection and frame

synchronization for wireless network signals. Specifically, a receiver capable of

differentiating between and synchronizing to three commercial wireless networking

standards - IEEE 802.11a, IEEE 802.11b, and IEEE 802.16 - will be developed.

Although the current commercial implementations of these standards operate in separate

sections of the frequency spectrum, the intent of this thesis is to investigate their joint

signal detection independent of carrier frequency. This implementation would require a

 xvi

digital receiver with a wideband air interface. These three waveforms were chosen

because of their dominance in the commercial wireless networking market and because

they offer an excellent example for military wireless networking applications.

Signal detection is challenging in packet-switched, contention-based, wireless

networks because data is sent in bursts. Since the receiver does not know when to expect

the next frame, each frame must carry extra information to allow for detection and frame

synchronization. In the IEEE 802.11a, IEEE 802.11b, and IEEE 802.16 standards, a

header section is added at the front of each frame to accomplish this task. The header

includes a signal, called the preamble, which is the same for each frame. The preamble is

intended to identify the frame as belonging to a certain standard. The receiver, then, must

have a way of recognizing the preamble. This thesis describes the properties of each of

the preambles of the IEEE 802.11a, IEEE 802.11b, and IEEE 802.16 standards.

Following this, an effective preamble recognition technique in which the receiver

maintains a copy of each preamble of interest is presented. The receiver compares every

received signal with the stored preambles to see if there is a match. This method of

comparison is accomplished through the cross-correlation of the received signal with the

stored preambles. The preambles were designed so that when two versions of the same

preamble are aligned perfectly, the result is approximately an order of magnitude larger

than when they are not aligned perfectly or when the preamble is not present. Signal

detection occurs when the cross-correlation exceeds a predetermined threshold.

For a digital receiver to detect each of these signals without misidentifying any of

them, each of the preambles must have low values when cross-correlated with the others.

This thesis investigates the cross-correlation properties of the preambles. Following

this, the thesis defines a decision threshold appropriate for joint detection of all three of

the above-mentioned wireless networking signals. A decision threshold is chosen using

the Neyman-Pearson test. In the Neyman-Pearson test, a decision threshold is determined

based on a desired probability of false alarm. The probability of false alarm is the

likelihood that the receiver will determine a signal as present when it is not. Once a

decision threshold has been found, its associated probability of detection can be

 xvii

determined. In this way, a decision threshold is found for the receiver that can be applied

to each of the signals of interest to generate acceptable probabilities of detection and

probabilities of false alarm.

Once the receiver has detected a particular signal, the following task is to achieve

frame synchronization. Frame synchronization is important in digital communications

because bits are encoded onto sinusoidal waveforms over defined intervals termed bit

periods. In order for the receiver to be able to recover the transmitted bit, the receiver

must integrate the received waveform over this bit period. If receiver starts the

integration period too late or too early, the captured energy will be a mix of two different

bits. If the timing offset is significant, a high bit error rate will result, and the message

will not be received. Thus, in order to properly demodulate a received signal, the

receiver must be able to determine the start of the first bit period of the transmission.

The thesis presents a frame synchronization technique that uses the cross-

correlation result to find the first data symbol in the frame. The technique takes

advantage of the fact that the place of the preamble within the signal header is known a

priori. The technique also takes advantage of the fact that when the output of the cross-

correlation rises above the threshold, the last received sample in the filter should be the

last sample of the received preamble. In other words, the cross-correlation peak can be

used to find which sample corresponds to the end of the preamble. Once this sample is

located, the first data sample is always known to be a fixed number of samples away.

Models were created in MATLAB for the generation of IEEE 802.11a, IEEE

802.11b, and IEEE 802.16 frame headers. These baseband signals were passed through a

filter simulating a non-line of sight, multipath, fading channel. The resulting signals were

then processed by the receiver in parallel as shown in Figure 1. The components of the

receiver for detection, synchronization and demodulation were also developed in

MATLAB. Each signal was transmitted 10,000 times and the results were recorded.

Additionally, 100 runs of 10,000 noise samples were transmitted into the receiver to

determine the number of resulting false alarms.

 xviii

Signal
Generator
(802.11a,
802.16,
802.11b,

noise)

Channel
(Ideal,

AWGN,
Rayleigh)

802.11a

802.16

802.11b

Correlators

802.11a

802.11b

802.16

other

Decision Synchronization

802.11a

Data
Demodulation

802.11a

802.11b

802.16

Figure 1. Single Receiver Block Diagram for Multiple Wireless Networking
Waveform Detection and Synchronization.

The results of the simulations showed that, over a wide range of signal to noise

ratios, the IEEE 802.11a, IEEE 802.11b, and IEEE 802.16 signals could be distinguished

from each other. Over the 10,000 runs of each signal and the 100 runs of noise signals,

no false alarms were generated by any of the unintended correlators. The implication of

this is that a single digital receiver with a wideband air interface capable of sampling

each signal can be used to receive multiple wireless networking signals. As more

waveforms are to be added to the receiver’s capabilities, the first consideration has to be

the cross-correlation prosperities of the new signal’s preamble with the preambles of the

other signals. The only addition to the receiver is another software module, assuming

that the new signal’s frequency band is within the current operating range of the air

interface. The results also showed that the cross-correlation result can be used very

effectively to achieve frame synchronization for each of the signals tested.

Another result of the simulations concerned the frame information available when

the full IEEE 802.11a signal could not be demodulated due to low signal to noise levels.

It was noticed that even at low signal to noise levels, where the probability of parity

check failure was high, the bit error rates within the frame header field were low.

Furthermore, it was found that the data rate and data length field of the header could be

read correctly with significantly high probability of correctness even when the overall

signal could not be demodulated.

 xix

ACKNOWLEDGMENTS

There are not words to express my gratitude for the support and patience my wife

offered me during this process.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

With the popularity of IEEE 802.11a/b/g wireless networks, the prevalence of

cellular networks, and the introduction of the IEEE 802.16 standards, a constantly

changing selection of wireless networking choices will be available to the mobile user.

As the number of wireless networks increases, a radio device capable of connecting to

multiple wireless networks will be necessary. The device will need to be able to detect

and classify different wireless networking signals and to distinguish the signals from each

other. The device must also decide which network to connect to depending upon select

criteria, such as data rate or cost. One implementation towards this approach is to include

a separate receiver for each communication standard desired. This requires an ever

growing footprint as the number of communication options increases. Another solution

is a receiver with a radio frequency (RF) front end that operates in the frequency ranges

of the desired signals. This wideband air interface would sample the signals for digital

processing. Once the RF signal had been sampled, the samples would be digitally filtered

to determine if any of the signals of interest are present. The receiver would then decide

which network connection is most suitable. For this solution to be practicable, the digital

receiver must be able to detect and classify each of the signals of interest with a high

probability of detection, while at the same time not falsely classifying one signal as

another.

The research interest in this thesis is to investigate the detection of IEEE 802.11a,

IEEE 802.16, and IEEE 802.11b wireless networking signals by a single digital receiver.

IEEE 802.11a and IEEE 802.11b compliant systems operate near 5 GHz and 2.4 GHz,

respectively, in the United States [1] [2]. The operating frequencies of the IEEE 802.16

standards range from 2 GHz to 66 GHz [3]. This thesis assumes that the receiver has a

wideband air interface capable of receiving each of these signals and sampling them at

baseband. The thesis then explores the ability of signal processing techniques to detect,

classify, and demodulate the signals.

 2

The Department of Defense (DoD) interest in these technological developments is

two fold. First, as the DoD seeks high data-rate, battlefield communications, the

underlying physical layer and medium access (MAC) layer technologies implemented by

these standards offer significant opportunity for leveraging commercial technology into

military communication systems. Second, as these signals become ever more

commonplace, the interest will arise to be able to detect, classify and demodulate these

signals for signal intelligence purposes.

B. OBJECTIVE AND APPROACH

The objective of this thesis is to determine the suitability of a single, baseband,

digital receiver to detect and classify IEEE 802.11a, IEEE 802.16, and IEEE 802.11b

signals. Suitability is defined by the probability of detection of each signal when it is

present and the probability of false alarm for the other signals when they are not present.

The second objective is to implement this receiver using MATLAB and test its

performance in a communication channel defined by multipath propagation interference

in addition to additive white Gaussian noise. The third objective is to determine the

extent to which IEEE 802.11a signals can be demodulated in multipath environments

when full signal demodulation fails.

The approach to these objectives will be to analyze the signal detection problem

first. The preambles in the IEEE 802.11a and IEEE 802.16 packet headers will be used

as the basis of signal detection and classification. To this end, the preamble structure of

each of these standards will be analyzed and their auto- and cross-correlation properties

investigated. Following this, an attempt is made to define the probability density

functions for the presence and absence of an IEEE 802.11a or IEEE 802.16 signal in an

additive white Gaussian noise environment. These results will then be used to

analytically determine a detection threshold based upon the Neyman-Pearson test from

classical signal detection theory. The corresponding probabilities of detection for

different decision thresholds will be analyzed. With these results, a receiver operating

characteristic (ROC) curve for each standard will be developed. From the ROC curve, a

desired balance between a probability of detection and a probability of false alarm can be

 3

found. Following this, techniques for frame synchronization will be investigated utilizing

the signal detector output to best determine the beginning of the packet header in the

received samples.

All simulations in this thesis will be conducted with MATLAB. A model will be

introduced for the generation and demodulation of IEEE 802.11a signals. A second

model that partially implements the generation and demodulation of IEEE 802.16 signals

will also be introduced. Another model will be developed to simulate different channel

environments. These models will be linked to the developed detection, classification, and

synchronization model to generate test results concerning the ability of a common, digital

receiver to detect, classify, and synchronize to IEEE 802.11a, IEEE 802.16, and IEEE

802.11b signals. Additionally, these results will be analyzed to determine the ability of

the receiver to read packet header information in noisy channel environments.

C. RELATED WORK

The literature concerning the determination of decision thresholds for signal

detection of OFDM signals is not extensive. The significant paper is [4], where decision

thresholds were devised for a 1024-carrier OFDM signal. No work was found

concerning the determination of decision thresholds for IEEE 802.11a or IEEE 802.16

signals. This thesis attempts to follow the approach in [4] to determine appropriate

decision thresholds for IEEE 802.11a and IEEE 802.16 signals.

Much has been written in the literature on frequency and frame synchronization

for OFDM signals. Much of this work has been concerned with OFDM signals in

general, such as [5] [6] [7] [4]. More recent work has focused on specific

implementation issues of frequency offset correction and frame synchronization of IEEE

802.11a and IEEE 802.16 signals [8] [9]. This thesis will adapt an algorithm from [8]

and apply it to IEEE 802.11a and IEEE 802.16 signals for frame synchronization. This

algorithm is compared against the technique described in [4].

 4

D. ORGANIZATION

Chapter II covers the characteristics of radio channels defined by multipath

propagation. This chapter also investigates the fundamental principles of OFDM signal

generation. The chapter ends with a discussion of how OFDM signals were designed to

minimize the deleterious effects of multipath propagation. Chapter III discusses the

OFDM signal detection problem and how the IEEE 802.11a and IEEE 802.16 preambles

can be used to accomplish it. This chapter also includes an analysis of a frame

synchronization technique for OFDM signals. Chapter IV first presents the MATLAB

simulation model developed for this thesis. The remaining discussion in the chapter

presents the detection and synchronization results when the input to the receiver was an

IEEE 802.11a, IEEE 802.16, or IEEE 802.11b signal. Chapter V summarizes the

conclusions of the thesis and presents opportunities for future work. The appendix

contains the MATLAB code used in the simulation.

 5

II. BACKGROUND

Wireless networks employ orthogonal frequency division multiplexing (OFDM)

to achieve high data rate transmissions in multipath channels. In the IEEE 802.11a and

IEEE 802.16 standards, OFDM signals transmit data using binary-phase shift keying

(BPSK), quadrature phase-shift keying (QPSK), or quadrature amplitude modulation

(QAM) with forward error correction coding. This chapter will describe how the ideal

channel, the additive white Gaussian noise (AWGN) channel, and the multipath channel

affect a radio signal. Following this, OFDM signal design and how the OFDM waveform

can help mitigate the effects of multipath channel distortion will be discussed.

A. RADIO CHANNEL

The effects of the channel on a transmitted radio signal are statistical in nature and

change over time and can be characterized as a linear system, e.g., a filter. The received

signal is a result of the transmitted signal convolved with the channel impulse response

 () () ()x t s t h t= ∗ , (2.1)

where ()x t is the received signal, ()s t is the transmitted signal, ∗ represents linear

convolution, and ()h t is the impulse response of the channel.

The simulations in this thesis include three types of channel: ideal, AWGN, and

multipath. The ideal channel causes no change to the transmitted signal. Its impulse

response is

 () ()h t tδ= , (2.2)

hence

 () ()x t s t= . (2.3)

Thermal noise, caused by the motion of electrons in the receiver equipment, is a

function of system temperature and is the basis for AWGN. A signal received in an ideal

channel with AWGN is modeled as

 () () ()x t s t n t= + (2.4)

where ()n t is a Gaussian random process with zero mean.

 6

Multipath channels take into account the attenuation of the signal due to

propagation loss and multipath reflections. Two types of signal fading caused by a

multipath channel are flat fading and frequency-selective fading. In flat fading and

frequency-selective fading, the channel is modeled as time-invariant and the effects of the

multipath reflections on the received signal power are considered [10]. In Figure 2, as a

radio signal propagates from the transmitter, the electromagnetic wave will reflect,

scatter, or diffract off objects. The propagation loss of each path will differ because of

the different path lengths from the receiver to the transmitter. Further, the energy

absorbed due to the signal’s interaction with the objects along a given path will attenuate

the signal power. Additionally, since the lengths of the paths to the receiver are different,

the received waves will have different phases when they reach the receiver. These

different phases, when summed at the receiver, will add constructively or destructively

and cause the received signal power to vary. Thus, the total received signal can be

modeled as [11]

 () () [()] ()n n
n

x t t s t t n tα τ= − +∑ (2.5)

where ()n tα is the attenuated amplitude of a signal path and ()n tτ is the delay of the

signal path.

Obstacle

Obstacle

Transmitter Receiver

Path 2

Path 3

Path 1

Figure 2. Multipath Channel Environment.

From (2.5), the received signal in a multipath channel is a function of the time

delay of the various signal components received over a given interval. Multipath channel

delay is typically characterized by the root mean square (rms) delay or delay spread [10]

 7

 2 2()τσ τ τ= − (2.6)

where

2

2

n n
n

n
n

a

a

τ
τ =

∑
∑

 (2.7)

and

2 2

2
2

n n
n

n
k

a

a

τ
τ =

∑
∑

 (2.8)

and 2
na is the signal power of the nth path and nτ is the delay of the nth path .

Channel coherence is a statistical measure of the range of frequencies over which

the channel has a certain degree of correlation. If the frequency correlation is required to

be above 0.5, the coherence bandwidth is defined as [10]

 1
5cB

τσ
= . (2.9)

Coherence bandwidth then defines the frequency range over which the channel frequency

response will change less than 50% on average. However, if the signal bandwidth is

larger than the coherence bandwidth, then the signal will experience frequency-selective

fading. In the time domain, frequency-selective fading occurs when

 sT τσ< , (2.10)

where sT is the symbol time. Under this condition, delayed versions of the signal will

cause the received signal to be distorted. The frequency domain representation of the

signal will show certain parts of the spectrum having larger gains than others. The effect

of this is two fold and is shown in Figure 3. First, the received symbol has less energy

because the energy of some of the delayed paths is not captured within the symbol period.

Second, this delayed energy from the first symbol is received during the second symbol

period and acts as interference. This effect is termed intersymbol interference (ISI) and

results in an increased bit error rate (BER). Thus, a multipath channel limits the data rate

achievable.

 8

Figure 3. Channel Impulse Response with Intersymbol Interference.

B. OFDM IN A MULTIPATH CHANNEL

For a wireless networking system that requires a high data transmission rate, the

multipath channel may limit the effective data rate below what is desired. OFDM signals

can overcome this limitation by dividing the spectrum into subchannels. The OFDM

transmitter divides its high data rate stream into smaller parallel substreams with symbol

periods greater than the channel delay spread. From Table 1, an IEEE 802.11a signal has

a bandwidth of 20 MHz and divides the spectrum into 64 subchannels so that each

subchannel has a bandwidth of 312.5 kHz. The maximum allowed rms delay spread for a

coherent bandwidth of 20 MHz is 10 ns. The maximum allowed rms delay spread for a

coherent bandwidth of 312.5 kHz is 640 ns. From Table 1, only 48 of the IEEE 802.11a

subchannels are used to carry data. The resulting data rate of each subchannel is then

1/48th of the total system data rate. This means that the effective symbol time per

subchannel is 48 times longer than the effective symbol time without frequency division

multiplexing. Thus, an OFDM signal can tolerate a greater rms delay spread before being

affected by ISI and achieve higher data rate transmissions.

 9

Parameter Value

SDN : Number of data subcarriers 48

SPN : Number of pilot subcarriers 4

STN : Number of subcarriers, total 52

FΔ : Subcarrier frequency spacing 0.3125 MHZ(= 20 MHz/64)

FFTT : IFFT/FFT period 3.2 μs (1/)FΔ

PREAMBLET : PLCP preamble duration 16 μs

SIGNALT : Duration of the SIGNAL BPSK-OFDM symbol 4.0 μs (GIT + FFTT)

GIT : GI duration 0.8 μs (FFTT /4)

2GIT : Training symbol GI duration 1.6 μs (FFTT /2)

SYMT : Symbol interval 4.0 μs (GIT + FFTT)

SHORTT : Short training sequence duration 8.0 μs (10 / 4FFTT×)

LONGT : Long training sequence duration 8.0 μs (2 2GI FFTT T+ ×)

Table 1. IEEE 802.11a Timing-related parameters (from Ref [1]).

A concern with transmitting the 64 subchannels in parallel is using the bandwidth

efficiently. Bandwidth is employed efficiently, if the signals on each subchannel are

mutually orthogonal. Orthogonality for two complex signals, 1 2() and ()s t s t , is defined

as [11]

 *
1 2

0

() () 0
sT

s t s t dt =∫ (2.11)

where * denotes complex conjugation. Orthogonal signals are spectrally efficient

because they can overlap in the frequency domain without causing interchannel

interference (ICI). Figure 4 shows an ideal, power spectral density plot of three

orthogonal subchannels. When each subchannel is at its peak power in the frequency

domain, the received power due to the other signals is zero. By taking samples at the

peak of the subchannel, the signal energy from only one of the frequencies is captured,

and the message on each subchannel will be recovered.

 10

−2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

M
ag

ni
tu

de

Max Power

No Interference

Figure 4. Ideal, Normalized Power Spectral Density Plot of Three Orthogonal
Signals.

In the IEEE 802.11 and IEEE 802.16 standards, subchannels are orthogonalized

through the use of the inverse discrete Fourier transform (IDFT). The IDFT is defined as

[13]

1

(2 /)

0

1[] []
N

j N kn

k
x n X k e

N
π

−

=

= ∑ (2.12)

where N is the length of the IDFT window, []X k is the frequency domain input, and

[]x n is the time domain sample. The IDFT basis functions (2 /)j N kne π are mutually

orthogonal [13]:

2 ()
1

2 / 2 / * 2 () /

0

1 0 if () 1
 if

j l k
N

j kn N j ln N j l k N

n

e l ke e e
N l k

π

π π π

− −
−

− −

=

⎧ −
= ≠⎪= −⎨

⎪ =⎩
∑ (2.13)

 11

In IEEE 802.11a, the input sequence to the IDFT is the discrete samples of BPSK, QPSK,

or QAM data symbols. From Table 1, the IDFT modulates these samples onto 48

orthogonal subcarriers, where each subcarrier has a bandwidth of 312.5 kHz. The output

of the IDFT is 64 time domain samples. When these 64 time domain samples are

transmitted in a 3.2-μs period, their frequency domain representation is 64 orthogonal

subcarriers (48 data subcarriers, 4 pilot subcarriers, and 12 null subcarriers) occupying a

bandwidth of 20 MHz.

 Since the IDFT is a periodic function, the output sequence repeats in time [13]. If

the output sequence is extended in time cyclically, the frequency domain representation

does not change. Samples from the end of the output sequence can be added to the

beginning of the output without changing the frequency domain representation. The

signal is extended in time but not in frequency. In IEEE 802.11a, sixteen samples are

copied from the end of each OFDM symbol and prepended to the beginning of the

symbol. These samples extend each OFDM symbol in time by 0.8 μs . By adding these

samples to the beginning of the symbol, a guard interval or cyclic prefix (CP) is created.

These sixteen time domain samples protect the signal against ISI by lengthening

the effective symbol time on each subchannel. If the energy from one symbol extends

into the next due to multipath reflections, these sixteen samples will be corrupted.

However, since these samples are redundant, the receiver can discard them without loss

of information. Thus, multipath reflections that arrive less than 0.8 μs into the next

symbol will only corrupt the cyclic prefix and no information will be lost.

 This chapter discussed the channel models that will be used in the thesis and how

OFDM signals are designed to allow for high data rate transmissions in multipath

channels. The next chapter will discuss signal detection and frame synchronization

techniques for OFDM signals.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. SIGNAL DETECTION, CLASSIFICATION &
SYNCHRONIZATION

Every radio receiver must be able to distinguish signals from noise. Once a

receiver has determined that a signal is present, it must determine if the signal is intended

for the receiver. If the signal is not classified as one intended for the receiver, it will be

ignored. If the signal is classified as one intended for the receiver, the receiver will

attempt to demodulate it. As shown in Figure 5, the receiver makes the detection

determination by comparing the value of the output of a correlator, a random variable,

against a pre-determined decision threshold. If the detector output is higher than the

threshold, detection occurs. This chapter outlines how the decision threshold is

determined and how the detector output is computed.

Figure 5. Correlator-based Signal Detector.

A. DETECTION AND CLASSIFICATION

In classic binary detection theory, the receiver must choose between two

hypotheses, 1H and 0H . The first hypothesizes that symbol 1 has been sent. The second

hypothesizes that the symbol 0 has been sent. A probability density function (PDF) can

be used to model both hypotheses. This problem can also be presented as detecting the

presence or absence of a desired signal, which is typical of a radar target detection

scenario. In this case, the first hypothesis assumes the signal is present and second

hypothesis assumes that the signal is absent and only noise is present. Since the channel

introduces distortion into the received signal, the first hypothesis is characterized by the

statistical nature of the channel and the power of the signal. The second hypothesis is

characterized by the statistical nature of the noise.

 14

When the decision between the two hypotheses is based upon the ratio of the

PDFs being larger or smaller than a given threshold, the decision test is called the

likelihood ratio test [14],

1

0

0 10 001

0 1 01 11

()()
() ()

H

H

P C Cf x
f x P C C

> −
< −

 (3.1)

where 1()f x is the PDF of the hypothesis that assumes the signal is present, 0 ()f x is the

PDF of the hypothesis that assumes only noise is received, 1P and 0P are the a priori

probabilities of the signal being present or not, and ijC for 0,1 and 0,1i j= = , are the

costs associated with each course of action.

When the a priori probabilities are not known or it is not practical to assign costs,

the Neyman-Pearson test is used. The Neyman-Pearson test sets a constraint on the

probability of false alarm, such that [15]

 '
0 ()

T

f
x

P f x dx α
∞

= =∫ (3.2)

where 'α is the constraint (a constant) and Tx is the threshold. A constraint is chosen

and (3.2) is solved for Tx . The probability of false alarm is the likelihood that the

decision statistic based upon noise input will be above the threshold. Once a threshold

has been determined, then the probability of detection, dP , and the probability of miss,

mP , can be found using the PDF of the signal being present [15]:

 1()
T

d x
P f x dx

∞
= ∫ (3.3)

and

 1()Tx

mP f x dx
−∞

= ∫ . (3.4)

The probability of detection is then the likelihood that the decision statistic

generated when the signal is present is above the threshold. Conversely, the probability

of miss is the likelihood that the decision statistic generated when the signal is present is

below the threshold. Figure 6 depicts the PDFs of a two-hypothesis scenario in an

 15

AWGN channel. As the threshold is raised, fP and dP decrease, and mP increases. The

goal of signal detection is to make fP as small as possible while maintaining an

acceptable dP .

−2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Threshold

M
ag

ni
tu

de

P
f

Threshold

P
d

P
m

f
0
(x) f

1
(x)

Figure 6. Conditional Probability Density Curves Showing the Areas Defining dP ,

fP , and mP .

1. IEEE 802.11a and IEEE 802.16 Preambles

High data rate, packet-based wireless local area networks (WLANs) require fast

detection and classification times because of the bursty nature of packet-based

communications. Without a continuous signal to maintain synchronization, WLANs

must synchronize quickly to avoid suffering a lower data rate due to the overhead needed

for synchronization. Detection of IEEE 802.11a and IEEE 802.16 signals is performed

by searching for the preamble in a received signal by correlating the received signal

against one symbol of the short or first preamble, respectively.

In discrete time, the cross-correlation between two signals, [] and []x n y n , is

defined as

 16

1

*

0
[] [] [1]

L

n
C k x n k y n k L

−

=

= + + − +∑ . (3.5)

where L is the size of the sliding window of the correlator and * denotes complex

conjugation. The power in one of the signals

1

2[] []
L

n o
P k x n

−

=

=∑ (3.6)

can be used to normalize the cross-correlation such that

 [][]
[]

C kD k
P k

= . (3.7)

The cross-correlation result is normalized so that a single decision threshold can be used

regardless of the received signal power.

For the preambles to be useful in achieving signal detection in a joint detection

receiver, they must have low normalized cross-correlation values. The following sections

will detail the structure of the IEEE 802.11a and IEEE 802.16 preambles and their

correlation properties.

a. IEEE 802.11a Preambles

Both the IEEE 802.11a and IEEE 802.16 standards begin a frame

transmission with a preamble. The preamble is intended to be used for signal detection,

classification, and time and frequency synchronization. In both standards, the preamble,

or training sequence as it is also called, is broken into two parts.

In IEEE 802.11a, the two parts are called the short preamble and the long

preamble and are depicted in Figure 7. The short preamble consists of 10 short symbols

and the long preamble consists of two long symbols. The 10 short symbols of the short

preamble are comprised of 12 subcarriers of an OFDM symbol [1]. The transmission

time of each of the short symbols is 0.8 μs . After sampling at 20 MHz, there are 16 time

domain samples per short symbol. The short preamble then consists of a total of 160

time domain samples lasting 8.0 μs .

 17

Figure 7. IEEE 802.11a Short and Long Preambles (From Ref [1]).

Table 2 gives the standard time domain sample values of one of these

short symbols. Both the real and the imaginary samples sum to zero and each has seven

positive samples, eight negative samples and one zero term. Thus, when these samples

are multiplied by a random input, the resulting magnitude will be at least an order of

magnitude smaller than the original input. Further, since half the terms are positive and

the other half negative, when the results of the multiplications are added together, the

sum will again be smaller. Thus, when the input samples directly match these values, the

magnitude of the correlated output is expected to be significantly higher than otherwise.

IEEE 802.11a Short Preamble Time Domain Samples

Real Time Domain Samples Imaginary Time Domain Samples
0.046 0.046

-0.1324 0.0023
-0.0135 -0.0785
0.1428 -0.0127
0.092 0

0.1428 -0.0127
-0.0135 -0.0785
-0.1324 0.0023

0.046 0.046
0.0023 -0.1324

-0.0785 -0.0135
-0.0127 0.1428

0 0.092
-0.0127 0.1428
-0.0785 -0.0135
0.0023 -0.1324

Table 2. Short Preamble Time Domain Sequence Samples.

 18

The first six symbols of the short preamble are intended to be used for signal detection,

automatic gain control, and diversity selection. The last four short symbols are intended

for coarse frequency offset estimation and timing synchronization [1].

The long preamble consists of a cyclic prefix and two long symbols. In

the time domain, each long symbol consists of 64 complex time domain samples when

sampled at 20 MHz. The cyclic prefix is the last 32 samples of the symbol prepended to

the first long symbol. The cyclic prefix is transmitted for 1.6 μs and each long symbol is

transmitted for 3.2 μs . The total length of the long preamble is then 160 samples with a

transmission time of 8.0 μs . The long preamble is intended for channel estimation and

fine frequency offset estimation [1]. Figure 8(a) shows one symbol of the short preamble

correlated with the full IEEE 802.11a preamble in an ideal channel. After an initial

sequence of twenty zeros, the ten symbols of the short preamble each create peaks that

are 80% above the cross-correlation between short and long preamble. In Figure 8(b), the

cross-correlation of one symbol of the long preamble with the full IEEE 802.11a

preamble results in one smaller peak that marks the extended cyclic prefix and then two

taller peaks that are 3.8 times greater than the cross-correlation between the long and

short preamble symbols.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Sample Index k

C
ro

ss
−

co
rr

el
at

io
n

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Sample Index k

C
ro

ss
−

co
rr

el
at

io
n

(a) (b)

Figure 8. Cross-correlation of the IEEE 802.11a Preamble with (a) Short Preamble
Correlator and (b) Long Preamble Correlator.

 19

b. IEEE 802.16 Preambles

In the IEEE 802.16 standard, the preambles are different on the downlink

and the uplink. The uplink preamble is a shortened version of the downlink preamble.

Here, the downlink preamble as shown in Figure 9 will be described. The first symbol

consists of a cyclic prefix followed by four repetitions of a 64 sample sequence. The

second symbol is comprised of a cyclic prefix followed by two repetitions of a 128

sample sequence. Both cyclic prefixes are the same length and each is also the same

length as the cyclic prefixes within the OFDM data symbols. In IEEE 802.16, the cyclic

prefix size is variable, depending upon the channel rms delay spread.

CP 6464 64 64 128128CP

First Preamble Second Preamble

Figure 9. IEEE 802.16 Downlink Preamble (From [12]).

Using a cyclic prefix of 64 time domain samples, Figure 10(a) shows the cross-

correlation of the complete downlink preamble with one symbol of the first preamble.

There are five peaks because the cyclic prefix matches the length of a symbol of the first

preamble. The cross-correlation between one symbol of the first preamble and one

symbol of the second preamble is 8.8 times less than the maximum auto-correlation of

one symbol of the first preamble. Figure 10(b) shows the cross-correlation of one symbol

of the second preamble with the complete downlink preamble. The smaller correlation

peak results from the cyclic prefix. The maximum cross-correlation value between one

symbol of second preamble and one symbol of the first preamble is more than seventeen

times less than the max autocorrelation value of one symbol of the second preamble.

 20

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Sample Index k

C
ro

ss
−

co
rr

el
at

io
n

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Sample Index k

C
ro

ss
−

co
rr

el
at

io
n

(a) (b)

Figure 10. Cross-correlation of the IEEE 802.16 Preamble with (a) First Preamble
Correlator and (b) Second Preamble Correlator.

2. Cross-correlation of IEEE 802.11a and IEEE 802.16 Preambles

Figure 11(a) shows the results of running the IEEE 802.16 preamble through the

IEEE 802.11a short preamble correlator in an ideal channel. Figure 11(b) shows the

results of running the IEEE 802.11a preamble through the IEEE 802.16 first preamble

correlator in an ideal channel. Table 3 lists the maximum cross-correlation values of the

IEEE 802.11a and IEEE 802.16 preamble symbols. As can be seen from both Figure 11

and Table 3, in an ideal channel an IEEE 802.16 signal will only trigger a detection in an

IEEE 802.11a receiver if the decision threshold is set below 0.1379. Furthermore, in the

same channel an IEEE 802.11a signal will only trigger a detection in a IEEE 802.16

receiver if the decision threshold is set below 0.1991.

 21

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

C
ro

ss
−

co
rr

el
at

io
n

Sample index k
0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

C
ro

ss
−

co
rr

el
at

io
n

Sample index k

 (a) (b)

Figure 11. Preamble Cross-correlation: (a) IEEE 802.11a Short Preamble Correlator
Output with IEEE 802.16 Downlink Preamble Input; (b) IEEE 802.16
First Preamble Correlator Output with IEEE 802.11a Preamble Input.

Correlator and Input Maximum Value
802.16 preamble through 802.11a short
preamble correlator

0.1379

802.16 preamble through 802.11a long
preamble correlator

0.0460

802.11a preamble through first 802.16
preamble correlator

0.1991

802.11a preamble through second 802.16
preamble correlator

0.0800

Table 3. Maximum Cross-correlation Values between IEEE 802.11a and IEEE
802.16 Preamble Symbols.

3. Decision Statistics

This section will compare the decision statistics from two correlation methods

used for signal detection. The first method is the autocorrelation method and is detailed

in [4]. The second method is the cross-correlation method and will be explained below.

For each method, the mean and the variance of the decision statistic will be determined

when the signal is present and when only noise is present. Following this, the statistical

distribution for the noise only case will be discussed in order to apply the Neyman-

Pearson test to determine detection thresholds.

 22

In [4], a PDF for the noise-only hypothesis was derived for an OFDM signal

using autocorrelation to detect a repeated sequence. This paper, written before the IEEE

802.11a standard was adopted, called for a two symbol training sequence. The first

symbol was to contain two identical sequences preceded by a cyclic prefix and was to be

used for frame synchronization. The second symbol was to contain two separate

pseudonoise sequences on the even and odd frequencies to enable frequency offset

calculations. The simulations in [4] used an OFDM signal with 1000 subcarriers

oversampled at 1024 samples per symbol. The guard interval was equal to 10% of the

data symbol. The normalized decision statistic was defined as [4]:

2

2

[]
[]

([])A

R k
D k

P k
= (3.8)

where the autocorrelation is defined as

1

*

0
[] ([] [1])

L

n
R k x n k x n k L

−

=

= + + − +∑ . (3.9)

 Since the real and imaginary parts of the noise are assumed to be Gaussian, the

autocorrelation of the noise is a chi-square random variable defined as

 2 4 2
2[] 2 nR k Lσ χ= (3.10)

where 2
2χ is a chi-square random variable with a mean of two and a variance of four.

The square of the received noise power is Gaussian with a mean of 2 44 nLσ and a variance

of 4 816 nL σ [4]. If each term in (3.8) is divided by the mean of the denominator, the

distribution of []AD k is

2

2
1

2[]
41,

A
LD k

n
L

χ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼ (3.11)

where ∼ signifies “is distributed” and (),n a b signifies a Gaussian random variable with

mean a and variance b . Since the mean of the denominator is one and the variance is

smaller than the mean, the PDF of the decision statistic for the noise-only case can be

approximated as [4]

 23

 2
2

1[]
2AD k

L
χ∼ . (3.12)

The mean and variance of the decision statistic are

 [] 2 2
2 2

1 1 1 1[] (2)
2 2 2AE D k E E

L L L L
χ χ⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦⎢ ⎥⎣ ⎦

 (3.13)

2 2

2 22 2
22 2 2 2 2 2 2

var()1 1 1 4 4 1 1var[[]] ()
4 4 4A

E
D k E

L L L L L L L
χ χ

χ
⎡ ⎤+ +⎣ ⎦⎡ ⎤= − = − = − =⎣ ⎦ (3.14)

where []E is the expectation operator.

This approach can be applied in an IEEE 802.11a receiver to determine the mean

and variance of the decision statistic when a signal is present and when only noise is

present. In the following sections, this method will be compared against the mean and

variance of the cross-correlation decision statistic.

a. IEEE 802.11a Receiver Cross-Correlation Decision Statistic
when Preamble is not Present

In the cross-correlation approach, a cross-correlation is performed

between the received samples and one symbol of the IEEE 802.11a short preamble.

When the preamble is not present, the received signal is only noise. The cross-correlation

is defined in vector notation as:

 H H= =c p x p n (3.15)

where Hp is the complex conjugate transpose of one symbol of the short preamble and

n is a vector of sixteen complex noise samples. The assumption is made that the real and

imaginary parts of the noise samples are Gaussian random variables with zero mean and a

variance of one. Similar to (3.8), the normalized decision statistic is defined in vector

notation as:

()

2

22
[]CD k =

c

p
 (3.16)

where 2 0.2031=p . The correlation term in the above equation can be expanded as

) ()H
I Q I Qj j= (+ +c p p n n . (3.17)

 24

The numerator of the decision statistic can then be expanded into

()

2 2 2

22

() 2()() ()

 2()() ()

T T T T
I I I I Q Q Q Q

T T T T
I Q Q I Q I I Q

= + + −

+ +

c p n p n p n p n

p n p n p n p n
 (3.18)

where T is the transpose of the vector. Taking the expectation of this term yields

 { } { }2 2 2 2 2() () () ()T T T T
I I Q Q Q I I QΕ = Ε + + +c p n p n p n p n (3.19)

where { } { }0 and) 0T T T T
I I Q Q I Q Q IΕ = Ε =p n p n p n p n because the noise samples are

independent, zero-mean random variables and all of the preamble terms are constants.

This equation can be further simplified by noting that the expectation of each of the

individual terms in (3.16) is equal. Taking one term,

 { }2 2 2 2 2()T
I I i i i n

i i

p n p σ⎧ ⎫Ε = Ε =⎨ ⎬
⎩ ⎭
∑ ∑p n (3.20)

where 2
nσ is the variance of the noise samples. Since 2 2

i q
i i

p p=∑ ∑ , the mean of the

cross-correlation term is 2 24 i n
i

p σ∑ . The mean of the decision statistic is then defined as

 { }
2

24(0.1016)[] 9.43
0.0413

n
C nD k σ σΕ = = . (3.21)

When an IEEE 802.11a signal is not present, the decision statistic is based

on the power of the received noise. Considering the dynamic range of communication

receivers, the assumption is made that the highest acceptable noise power is -20 dBm. As

AWGN power is added to the signal, the variance of the decision statistic will increase

making it more likely that a random spike will be above the decision threshold and cause

a false detection. A low decision statistic, when only noise is present, will help reduce

the likelihood of a false detection. In Figure 12, the theoretical values derived above are

plotted against simulation results when the input samples are Gaussian with a mean of

zero and a standard deviation of nσ . Ten simulation runs of 10,000 samples were

performed with 0.01nσ = . The average mean of these runs was taken at every SNR level

and plotted against the corresponding SNR. The results are plotted along with the results

of the autocorrelation method. The autocorrelation average mean is dependent only on

 25

the correlator window size and is a constant, which for IEEE 802.11a is 1 1 0.0625
16L

= = .

The cross-correlation average mean is dependent upon the input signal power as shown in

(3.18). The mean of the cross-correlation decision statistic is over an order of magnitude

lower than the autocorrelation method. Thus, the cross-correlation method will be able to

tolerate a higher level of additive noise without a higher rate of false detection.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

SNR (dB)

A
ve

ra
ge

 M
ea

n
C

or
re

la
tio

n

cross sim
cross theory
auto sim
auto theory

Figure 12. Theoretical and Simulated Average Mean Correlation Values with No
Preamble Signal Present for the Autocorrelation and Cross-correlation
Methods in an AWGN Channel.

The variance of the cross-correlation term of the decision statistic can be

defined as

 () (){ } { } 222 2var ⎡ ⎤= Ε − Ε
⎣ ⎦

c c c . (3.22)

From the cross-correlation mean calculations above, it can be seen that the variance of

the decision statistic will contain fourth order and second order terms and that the first

 26

order terms will go to zero. Thus the variance is expected to be significantly smaller than

the mean. A closed form solution for the cross-correlation variance for IEEE 802.11a

could not be derived; the results of [4] are used as theoretical values. For Figure 13, the

variances of the two decision statistics were taken 10,000 times at various SNR levels.

These values were then averaged and plotted against the corresponding SNR. The

simulated results for both methods show the variance to be the square of the mean as

predicted in (3.10) for the autocorrelation method. The empirical results suggest that the

variance of the cross-correlation can also be characterized as the mean of cross-

correlation result squared. The variance of the cross-correlation method is two orders of

magnitude lower than the autocorrelation method variance. The impact of a lower

variance is a more constant decision statistic, and, thus, one less likely to have additive

noise increase its value over the decision threshold and cause a false detection.

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

A
ve

ra
ge

 V
ar

ia
nc

e
of

 C
or

re
la

tio
n

cross sim
auto sim
auto theory

Figure 13. Average Variance of the Autocorrelation and Cross-correlation Methods
with No Preamble Signal Present in an AWGN Channel.

 27

b. IEEE 802.11a Receiver Cross-Correlation Decision Statistic
when Preamble Signal is Present

When the IEEE 802.11a preamble is present, the decision statistic is still

defined using (3.12). The cross-correlation term is defined as

 () ()H H
I Q I Q I Qj j j= = + + + +c p x p p p p n n (3.23)

where the received signal is comprised of two vectors: the preamble, p , and AWGN

samples, n . Equation (3.20) can be simplified to

 0.2032 T T T T
I I Q Q Q I I Qj j= + + − +c p n p n p n p n . (3.24)

The expectation of the magnitude squared is

 { } { }2 2 2 2 2 20.2032 () () () ()T T T T
I I Q Q Q I I QE E= + + + +c p n p n p n p n (3.25)

where all the cross terms are zero as the noise samples are assumed to be uncorrelated.

Notice that the last four terms are the same four terms in (3.16). The expected value of

the decision statistic is then

 { }
2 2

2

0.2032 4(0.1016)[]
0.2032

n
CD k σ+

Ε = . (3.26)

Thus, when the preamble is present, the decision statistic will have a value that varies

with the amount of noise power.

In the autocorrelation method, the mean of the decision statistic is defined

as [4]

 { }
4

2 2 2[]
()A

s
A D

s n

D k σμ
σ σ

Ε = =
+

 (3.27)

where sσ is the standard deviation of the signal. The mean of this decision statistic

decreases with SNR. As the uncorrelated noise power is increased, the autocorrelation

between them goes down as shown in Figure 14. The resulting lower mean decision

statistic value will cause an increase in the probability of missed detection.

Figure 14 also shows that in the cross-correlation method, the mean of the

decision statistic stays centered around one. As the noise power increases, so does the

average mean. However, the mean stays closer to one compared to the autocorrelation

 28

method. Thus, a lower probability of missed detections will result. This method has a

higher mean when the signal is present because uncorrelated noise is only being added to

one term in the correlation rather than both terms as in the autocorrelation method. The

mean of the correlation output then remains higher even at lower SNR levels. This

results in a lower probability of missed detections.

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

SNR (dB)

A
ve

ra
ge

 M
ea

n
C

or
re

la
tio

n

cross corr sim
cross corr theory
auto corr sim
auto corr theory

Figure 14. Average Mean of the Autocorrelation and Cross-correlation Methods
When an IEEE 802.11a Preamble is Present in an AWGN Channel.

In Figure 15, the cross-correlation output is shown at a SNR of 0 dB. The

ten spikes in the figure are the first indices of the ten symbols of the short preamble.

Even at 0 dB, the correlation with the preceding 300 noise samples is on an order of

magnitude lower than the correlation peaks. Notice that the points between the spikes

also remain almost an order of magnitude lower than the correlation peaks. A detector

can then count the peaks and the spacing between them to detect and classify the signal.

 29

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample Index

C
ro

ss
 C

or
re

la
tio

n
O

ut
pu

t

Figure 15. Cross-Correlation with IEEE 802.11a Short Preamble at 0 dB SNR.

In Figure 16, the variance of both methods can be seen to be higher at

lower SNR levels. The theoretical autocorrelation variance is defined as [4]

 []
2 2 2 4

2 2 4

2 [(1) (1 2)
var []

()
A As D s n D n

A
s n

D k
L

σ μ σ σ μ σ
σ σ

+ + +
=

+
 (3.28)

A closed form solution for the variance of the cross-correlation method for IEEE 802.11a

could not be derived. From Figure 16, the variance of both methods decreases as the

SNR increases, although the cross-corrlelation variance is higher at lower SNR levels.

The difference between the methods is that the mean of the cross-correlation method is

around one at the correct timing instants, whereas the variance of the autocorrelation

method has an ever decreasing mean as the SNR decreases. Thus, even with a lower

variance at lower SNR levels, the autocorrelation method is still expected to

underperform the cross-correlation method in poor SNR environments.

 30

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

 A
ve

ra
ge

 V
ar

ia
nc

e
of

 C
or

re
la

tio
n

cross corr sim
auto corr sim
auto corr theory

Figure 16. Average Variance of Auto and Cross-correlation Methods When the IEEE
802.11a Preamble is Present in an AWGN Channel.

4. Decision Thresholds

In (3.14), the real and imaginary parts of the noise in c are zero-mean Gaussian

random variables, and 2c is a chi-square random variable because the sum of the square

of two zero-mean Gaussian random variables is a chi-square random variable. The mean

of this chi square random variable is two and the variance is four [4]. Since 2p is a

constant in (3.13), the decision statistic of the cross-correlation method will have the

random variable characteristics of 2c . Thus, the decision statistic for the hypothesis of

the noise only case has a chi-square distribution.

The Neyman-Pearson test can now be applied to determine a decision threshold

based upon the PDF of the hypothesis of the noise-only case. To solve the Neyman-

 31

Pearson test, a constraint must be chosen. The constraint details the level of false alarm

that is acceptable to the system. In wireless LANs, a high false alarm rate wastes system

resources and increases the possibility that an actual signal is missed while processing a

false alarm. For mobile nodes on battery power, the energy spent in processing false

alarms may be of significance. At the same time, however, a higher false alarm rate

necessarily means a higher probability of detection and a lower probability of a missed

signal. A surveillance application may be willing to bear the extra processing of false

alarms for an increase in detection probability.

In Figure 17, (3.2) is solved over a range of constraints where the distribution

used is the chi square distribution derived in [4] with a mean defined as 1
L

and a standard

deviation defined as 1
L

. Correlation windows of 16, 64, and 128 are used. For both, as

the threshold increases, the probability of false alarm decreases. As to be expected, the

larger correlation window offers better performance.

0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Threshold

P
f

L=16
L=64
L=128

Figure 17. Theoretical Probability of False Alarm as a Function of Decision
Threshold for Correlation Window Lengths of 16, 64, and 128.

 32

The thresholds defined from the Neyman-Pearson test can be used to determine

the probability of the detection and the probability of miss. The probability of detection

is determined using (3.3) where the distribution is Gausssian with mean and variance

defined in (3.24) and (3.25), respectively [4]. In Figure 18, the probability of detection is

plotted over increasing SNRs for two correlators: one with a correlation window of

length sixteen and another with a correlation window of length 64. For the lower SNRs,

a very low threshold is needed to maintain a high level of detection. A dP of 90% at a

SNR equal to 1 dB requires a threshold of 0.08. The same dP at a SNR equal to 30 dB

requires a threshold of 0.84. Referring back to Figure 17, the lower threshold for the

lower SNR results in a high probability of false alarm. Alternately, at high SNR levels, a

higher threshold can be chosen without sacrificing dP or increasing fP . Thus, there is

always a trade-off between dP and fP , but the trade-off is not as significant at higher

SNR values.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
d

SNR 1 dB
SNR 5 dB
SNR 10 dB
SNR 30 dB

Figure 18. Probability of Detection as a Function of Decision Threshold for

Correlation Window Length 16 in an AWGN Channel.

 33

The probability of false alarm and probability of detection for a received signal

can be synthesized into one plot called a receiver operator characteristic (ROC) curve.

Figure 19 shows the theoretical ROC curves for increasing SNR levels. In this figure, the

lower probability of detections can be related to higher probabilities of false alarm. As

the SNR increases, the faP associated with a dP decreases. As an example, when the

SNR = 1 dB, a probability of detection of 0.50 for an IEEE 802.11a signal detector

results in a false alarm rate of 0.2230 at a threshold of 0.26. In the ROC curve for an

IEEE 802.16 signal detector in Figure 20, the longer correlation window acts in a similar

manner to a higher SNR by pushing the curves towards smaller probabilities of false

alarm for the same dP as an IEEE 802.11a receiver. Thus, the ROC curve can be used to

find a balance between dP and faP in choosing a decision threshold.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
f

P
d

SNR 1 dB
SNR 5 dB
SNR 10 dB
SNR 30 dB

Figure 19. Theoretical Receiver Operating Characteristic Curve for an IEEE 802.11a

Receiver using Autocorrelation for Signal Detection in an AWGN
Channel.

 34

10
−8

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
f

P
d

SNR 1 dB
SNR 5 dB
SNR 10 dB
SNR 30 dB

Figure 20. Theoretical Receiver Operating Characteristic Curve for an IEEE 802.16

Receiver using Autocorrelation for Signal Detection in an AWGN
Channel.

B. FRAME SYNCHRONIZATION

In both IEEE 802.11a and IEEE 802.16, binary phase-shift keying (BPSK),

quadrature phase-shift keying (QPSK), or quadrature amplitude modulation (QAM) is

used to transmit data. In each of these modulation schemes, symbols are encoded onto

sinusoidal waveforms over defined periods of time. For each of these waveforms to be

demodulated, the receiver must find the beginning of the symbol period. If the receiver

starts the integration process at the start of the symbol duration, all of the symbol’s

energy will be captured and the signal will be correctly demodulated. Otherwise, the

integration period will include energy from two symbol periods and ISI will result.

In packet-based communications, symbol synchronization depends upon correct

frame synchronization. In frame synchronization, the receiver must decide which

received time domain sample corresponds to the beginning of the first OFDM symbol

following the preamble. An OFDM signal frame is shown in Figure 21. The frame starts

with a preamble and is followed by a series of OFDM symbols.

 35

Figure 21. OFDM Signal Frame Format.

Once an OFDM receiver has chosen a time domain sample as the first time domain

sample of the first OFDM symbol, the next 80 time domain samples are taken to

comprise the OFDM symbol. The first sixteen of these samples are assumed to be the

cyclic prefix and are discarded by the receiver. If the time sample chosen is not the first

time sample of the cyclic prefix of the first OFDM symbol, then the following 80 samples

taken will include data from two OFDM symbols as shown in Figure 22. In this case,

the 80 samples will include samples from the following symbol’s cyclic prefix. When

the FFT is taken of these time domain samples, data from two symbols will have been

mixed and ISI will result. Furthermore, since the start of all subsequent OFDM symbols

is based upon the timing of the first, the FFT windows of all the following symbols will

contain data values from two symbols. Thus, incorrect frame synchronization will cause

ISI for all of the OFDM symbols within that frame.

Figure 22. OFDM Symbols without Proper Frame Synchronization.

In [4], frame synchronization is accomplished using the normalized

autocorrelation decision statistic. When the signal is detected, the autocorrelation output

is a plateau with a length equal to the guard interval as shown in Figure 23. The symbol

starting point is found by finding the maximum value within this plateau and then

averaging the indices where the autocorrelation value drops below 90% of the maximum

[4]. Since the cyclic prefix in IEEE 802.11a signals of the OFDM symbol is not the same

 36

size as the cyclic prefix of the preambles, this technique is not effective for IEEE

802.11a. Since the short preamble is ten symbols of length sixteen, the resulting plateau

would be 128 samples long. This is shown in Figure 23 at a SNR of 20 dB with a

decision threshold of 0.9.

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample Index

D
ec

is
io

n
S

ta
tis

tic

Figure 23. Autocorrelation Decision Statistic for IEEE 802.11a Short Preamble at 20
dB

To apply the autocorrelation method to IEEE 802.11a frame synchronization, the

sample index at the end of the plateau, where the decision statistic drops below the

threshold, needs to be found. With a correlator window of length sixteen, the drop off

will be approximately 32 time samples before the end of the short preamble. In Figure

23, sample index 161 drops below this threshold. This would start the next symbol at

sample index 193, which is one off from the actual symbol start at sample index 192.

Another frame synchronization technique is described in [8]. Here, the cross-

correlation method is used and the algorithm searches for the peak outputs after the signal

 37

has been detected. For IEEE 802.11a signals, there should be ten peaks that are sixteen

time samples apart. When a peak is not found above the detection threshold after sixteen

samples, the short preamble is assumed to have ended. This time index is taken as the

beginning of the long preamble. For this method to succeed, all peaks must be above the

threshold. If noise reduces one of the ten peaks, the system will assume the long

preamble has started in the middle of the short preamble. The same methodology can be

applied to the long preamble for frame synchronization by searching for the two peaks of

the long preamble cross-correlation.

Figure 24 shows a comparison of the techniques described above for an IEEE

802.11a signal in a Rayleigh channel with rms delay spread of 85 10−× s. Ten thousand

runs were conducted over a SNR range from 0 to 30 dB. The decision threshold was 0.3.

The transmitted signal consisted of three hundred complex samples followed by the IEEE

802.11a short and long preambles followed by 100 complex noise samples to simulate

data. The offset from the ideal start of the first data sample was calculated for each run.

The number of times the synchronization result landed on an index was counted and

divided by the total number of runs to obtain the observed probability. The x-axis gives

the offset from the time sample that is the actual start of the first data sample. The y-axis

gives the average probability of the various techniques falling on that offset. Only those

results falling within 20± samples of the ideal sample index are shown. The figure

clearly shows the superiority of using the cross-correlation technique. The results from

the cross-correlation with the long and short preamble are statistically similar. The cross-

correlation with the short preamble led to a sample offset of two samples from the ideal

94.5% of the time. The cross-correlation with the long preamble led to a sample offset of

two samples from the ideal 92% of the time. The longer correlation window when using

the long preamble makes this method more resistant to noise corruption. However, more

peaks were counted using the short preamble. Thus, the repetition of the peaks from the

ten symbols of the short preamble led to a slightly improved performance over the two

peaks of the longer correlation window.

With the autocorrelation methods, the correlation window size does determine the

effectiveness in tracking the end of the plateau. The drop off from the plateau is longer

 38

with the long preamble, and thus the drop off is not as sharp. This accounts for the wider

distribution of timing starts. The autocorrelation with the short preamble performs better

in high SNR environments and its shorter length results in a steeper drop off as was seen

in Figure 23. As the SNR decreases, the short autocorrelation does not perform as well

due to the variance of the plateau height with increased noise.

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample offset from start of data symbol

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

cross short
auto short
cross long
auto Long

Figure 24. Time Synchronization Comparison of the Autocorrelation and Cross-
Correlation Techniques in a Rayleigh Channel with RMS Delay Spread of

75 10−× s Averaged over a Range of SNR values from 0 to 30 dB.

C. SUMMARY

This chapter discussed the format of the IEEE 802.11a and IEEE 802.16

preambles and their correlation properties. The cross-correlation values of the two

preambles were found to be low in an ideal channel, suggesting that a single receiver

 39

could be employed to search for both signals without a high rate of false alarm. The

mean and variance of two signal detection methods were also compared. It was found

that the decision statistic of the cross-correlation method had a higher average mean

when the signal was present and a similar variance to the autocorrelation method.

Furthermore, the cross-correlation decision statistic had a lower average mean when the

signal was not present. For these reasons, the cross-correlation technique is a better

technique to detect and classify IEEE 802.11a and IEEE 802.16 signals. Lastly, the

decision statistics of both techniques were used for frame synchronization. It was found

that the cross-correlation technique was found to have a consistently small timing offset

in a given Rayleigh channel that was significantly smaller and more consistent than the

autocorrelation technique. The following chapter will apply the cross-correlators

developed in this chapter to detecting IEEE 802.11a, IEEE 802.16, and IEEE 802.11b

signals in a Rayleigh channel to determine the efficacy of a single receiver for all three

signals.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. SIMULATION MODEL AND RESULTS

In Chapter III, the probability of detection and false alarm were analyzed for a

correlator matched to one symbol of the IEEE 802.11a short preamble. In this chapter, a

sampled signal will be received by a bank of correlators each matched to a different

wireless networking preamble symbol. The objective is to determine the rates of

detection and false alarm for each correlator when each signal of interest was present.

The investigation centers on how well each correlator can filter out the other signals after

being received in a Rayleigh channel. The three wireless networking signals used are

from the IEEE 802.11a, IEEE 802.16, and IEEE 802.11b standards. These results are

compared against a Gaussian noise input. The simulation model used to implement the

detection and classification of the signals is described in detail followed by a discussion

of the detection and frame synchronization results. The goal is to show that a single

digital receiver with a pre-determined threshold can detect, classify and synchronize to

multiple wireless networking signals.

A. SIMULATION MODEL

Figure 25 depicts a block diagram of the simulation model. The model generates

an OFDM signal (IEEE 802.11a or IEEE 802.16), an IEEE 802.11b signal, or noise and

sends that signal through a channel. The received signal was then applied to a bank of

correlators matched to the different signals’ preamble symbols as discussed in Chapter

III. The normalized cross-correlation results were compared against a given decision

threshold. A correlation output above the threshold value was considered a detection and

classification of the signal data frame. Synchronization was then attempted for each of

the signals. Following this, the physical layer frame header was demodulated to see if the

transmitted information could be recovered. Each block of the model is described in

detail below.

 42

Signal
Generator
(802.11a,
802.16,
802.11b,

noise)

Channel
(Ideal,

AWGN,
Rayleigh)

802.11a

802.16

802.11b

Correlators

802.11a

802.11b

802.16

other

Decision Synchronization

802.11a

Data
Demodulation

802.11a

802.11b

802.16

Figure 25. Simulation Set Up.

1. Signal Generation

The IEEE 802.11a, IEEE 802.16, and IEEE 802.11b signals generated consisted

of the preamble and header bits. The IEEE 802.11a signals generated also included data

symbols following the header information. The noise signal samples were complex with

a Gaussian distribution with a mean of zero. The variance of the noise signal was set to

0.01 to match the power of the other signals. All the signals were then transmitted at the

same power level. Further, all signals were transmitted and received at baseband. The

following section will detail the process and structure of the transmitted signals. The

baseband transmitter model for each type of signal included in each subsection includes

in parenthesis the MATLAB M-files used to implement each function. These M-files are

included in the Appendix for reference.

a. IEEE 802.11a

In the IEEE 802.11a standard, information is passed from the medium

access control (MAC) layer in frames called MAC protocol data units (MPDU). The

MPDU bits were generated using the randint.m function of MATLAB. Figure 26 depicts

the implemented baseband block diagram for IEEE 802.11a signal generation.

 43

Figure 26. IEEE 802.11a Baseband Transmitter Model.

After the data bits are received from the MAC layer, they are first

scrambled. The data bits are scrambled to prevent long strings of either ones or zeros

being transmitted. Without scrambling, a string of 64 zeros or ones could cause the

power of the transmission to be higher or lower than the average. This could cause the

automatic gain control device in the receiver to operate in a non-linear region and cause

distortion.

The scrambled bits are convolutionally encoded according to the data

transmission rate as shown in Table 4. The base convolutional encoder is a rate

1
2 encoder with a constraint length of seven that is punctured to obtain coding rates of

2
3 and 3

4 . Convolutional forward error correction coding is used to detect and correct

bit errors.

Following convolutional encoding, the bits are interleaved. Interleaving

spreads adjacent encoded bits apart from each other. Convolutional decoders rely upon

the surrounding bits to best determine if a bit was received in error. If there is a group of

consecutive bit errors, the decoder will be unable to correctly decode the bits. When data

bits are interleaved, their order is changed for transmission. If the channel induces a

burst of consecutive errors, the bits in error will be spread apart at the receiver during the

de-interleaving process. Bit errors are then more likely to be isolated and be correctable

by the convolutional decoder.

 44

Data rate
(Mbps)

Modulation Coding Rate Coded bits
per
subcarrier

Coded bits
per OFDM
symbol

Data bits per
OFDM
symbol

6 BPSK ½ 1 48 24
9 BPSK ¾ 1 48 36
12 QPSK ½ 2 96 48
18 QPSK ¾ 2 96 72
24 16-QAM ½ 4 192 96
36 16-QAM ¾ 4 192 144
48 64-QAM 2/3 6 288 192
54 64-QAM 3/4 6 288 216

Table 4. Rate Dependent Parameters (From Ref [1]).

The interleaved bits are mapped into symbols dependent upon the data rate

according to Table 4. Higher-order symbol mapping allows more than one data bit to be

represented by a signal symbol and, thus, allows for a faster transmission rate. Higher-

order symbol mappings are more susceptible to noise interference and more power is

required to keep the bit error rate constant as the number of bits per symbol increases for

a constant bandwidth.

Following interleaving, the bits are mapped into symbols according to

Table 4. The modulation techniques used are BPSK, QPSK, 16-QAM, or 64-QAM.

After this, four pilot tones are inserted to aid with frequency tracking. In addition, twelve

nulls are added as discussed earlier. The resulting 64 values are transformed into time

domain samples by a 64-point IFFT. Sixteen cyclic prefix samples are prepended and the

resulting 80 time domain samples are sent to the channel.

b. IEEE 802.16

Figure 27 depicts the block diagram for IEEE 802.16 signal generation.

The process is similar to IEEE 802.11a signal generation. IEEE 802.16 signals are

generated differently depending upon whether they are on the uplink or the downlink.

The standard also allows for several optional aspects to physical layer signal generation.

The intent here was to create a basic IEEE 802.16 signal. A downlink signal was selected

with a cyclic prefix extension of 64 samples. The signal created had 256 subcarriers of

which 192 were used to carry data. The IEEE 802.16 standard uses the term randomizer

 45

as opposed to scrambler for the process to jumble the data bits to prevent long string of

ones or zeros being transmitted. Next, IEEE 802.16 employs a concatenated forward

error code correction. The two concatenated codes are a Reed-Solomon code and a

binary convolutional code. A shortened Reed-Solomon technique is employed first. The

code is shortened depending upon the data rate for transmission. To perform Reed-

Solomon coding, the input is first converted to a Galois field (82). The encoder accepts

239 bytes of data and returns 255 bytes of output data. When the code is shortened for

lower data rates, zeros are inserted before encoding; the same number of zeros are

removed after encoding.

Randomizer
(randomizer.m)

Reed Solomon
Encoder

(RSCoding.M)

Interleaver
(interleaver16.m)

Symbol
Mapping

(modData16.m)
IFFT

MPDU
Data

Cyclic
Prefix

Channel
(Channels.m)

Serial to
Parallel

Pilots &
Nulls Inserted

(createSymbol16.m

Convolutional Encoder
(ConvolutionCoding16.m)

(createDownLinkFrame.m)

Figure 27. IEEE 802.16 Baseband Transmitter Model.

Following the Reed-Solomon encoder is a 1/2 rate binary, convolutional

encoder with a constraint length of 7. The code is punctured depending upon the

modulation used. The data bits are then interleaved and mapped into BPSK, QPSK, 16-

QAM, or 64-QAM symbols. Pilots and nulls are added before a 256-point IFFT is taken.

The cyclic prefix of the last 64 samples of the symbol is added to the front of the symbol

before transmission.

c. IEEE 802.11b

The IEEE 802.11b signal can transmit data at rates of 1, 2, 5.5, or 11 Mbps

[2]. The 1- and 2-Mbps signals are transmitted using direct sequence spread spectrum

with a differential modulation of either BPSK or QPSK. The 5.5 and 11 Mbps signals are

transmitted using eight bit-complementary code keying. The passband signals are

transmitted at 2.4 GHz. The standard allows for two different preamble and header

 46

formats. One is backwards compatible with the earlier version of the standard and

another is only compatible with systems capable of transmitting at the higher data rates of

5.5 and 11 Mbps. The former is only transmitted at data rates of 1 and 2 Mbps. A

sixteen bit CRC, used to check for errors in the physical layer convergence procedure

(PLCP) header, is added as the last part of the PLCP header. Figure 28 depicts the

functional block diagram of the IEEE 802.11b signal generation used in the experiment.

The simulated signal was a 1 Mbps, differential BPSK waveform with the backwards

compatible preamble and PLCP header.

Create Preamble
& PLCP Header

MPDU
Data Add CRC

(build80211b.m)

Channel
(Channels.m)

Figure 28. IEEE 802.11b Baseband Transmitter Model.

2. Channel

The channels included in the model were ideal, AWGN, and multipath. For the

AWGN channel model, the only input required was a SNR. Multipath channels are

typically characterized as either Ricean or Rayleigh. A Ricean channel is a multipath

channel that includes a line of sight path from the transmitter to the receiver. The

Rayleigh channel does not include a direct line of sight path. All received paths are

reflections. Thus, the Rayleigh channel can typically cause more signal distortion and a

lower received signal power than a Ricean channel. A Rayleigh channel was chosen as

the multipath channel for the simulations.

Rayleigh channels are characterized by their rms delay spread as was discussed in

Chapter II. Typical indoor rms delay spreads for an in-door environment range between
9 710 to 10− − seconds [10]. Since OFDM signals were designed to handle delay spreads

less than the cyclic prefix length (0.8 μs for IEEE 802.11a), a rms delay spread of
85 10−× seconds was chosen. This rms delay spread was applied over a range of SNRs to

test the detection and synchronization algorithms in a range of channel environments.

 47

The simulations were first run with no Doppler spread in the channel. Following this, a

simulation was conducted with a Doppler spread of 20 Hz to show the degradation effects

of Doppler spread on OFDM symbols.

3. Detection

The detection algorithm employed was the cross-correlation technique discussed

in Chapter III. Each input was cross-correlated with the IEEE 802.11a, IEEE 802.16, and

IEEE 802.11b preambles. The results were compared against a predetermined decision

threshold. The simulation was conducted twice: first, using a decision threshold of 0.3

and then a decision threshold of 0.6. These two values were chosen to show the effects

on dP and fP of the decision threshold. If the value was above the threshold, detection

occurred. In this way, one received signal could cause multiple detections.

For IEEE 802.11a signals, the cross-correlation was applied to the short preamble

and the long preamble was used for channel estimation as intended by the standard. The

cross-correlation output was normalized by the preamble power. The detection algorithm

searched for all ten peaks within the short preamble. Only if all ten peaks were found at

the correct spacing of sixteen samples apart was a signal detected. In this way, the

probability of false alarm was considerably lower than discussed in Chapter III. The

probability of false alarm rates discussed in Chapter III were based on using only one

peak of the cross correlation output for detection. The probability of having ten values

above the threshold spaced exactly sixteen samples apart is ten times lower.

For IEEE 802.16 signals, the cross-correlation technique was applied to the first

preamble and the second preamble was used for channel estimation in the same approach

as was used for the IEEE 802.11a signals. The signal detection algorithm searched for all

five peaks of the first preamble in order to detect and classify the signal.

For IEEE 802.11b signals, the detection algorithm cross-correlated the received

signal with the 144 bit PLCP preamble. This value was normalized by the power of the

PLCP preamble. A value over the threshold was considered a detection and a

classification of the signal.

 48

4. Synchronization

For each of the signals, frame synchronization began after detection was made.

For the IEEE 802.11a signal, synchronization started from the sample index of the tenth

peak of the detection algorithm. This peak marked the end of the short preamble. The

next 160 received samples were the long preamble and the first sample after that was the

start of the header.

In a similar manner, the start of the IEEE 802.16 data was found by adding 64 to

the sample index of the last peak of the cross-correlation and then adding another 320 to

get to the end of the second preamble and the start of the header.

For IEEE 802.11b, the peak of the cross-correlation occurred at the end of the

SYNCH field of the preamble as shown in Figure 29. Sixteen bits were added to this

index to arrive at the first bit of the PLCP header. The signal and length fields can then

be extracted and the CRC bits checked. After adding 48 to the start of the PLCP header

index, the starting index of the data bits is found.

Figure 29. Long PLCP PPDU Format (from Ref [2]).

5. Demodulation

For IEEE 802.11a signals that were detected and classified, demodulation was

attempted after frame synchronization. The first step was to correct for phase distortion

 49

caused by the channel. A time-domain, channel estimation was employed. Since the

channel acts as a filter, the received signal samples can be written in discrete time as

 [] [] [] []x n h n s n n n= ⊗ + (3.29)

where ⊗ denotes circular convolution due to the circular nature of the transmitted signal

because of its cyclic prefix and []s n is the transmitted signal. Equation (4.1) can be re-

written in matrix notation as

 = +x Sh n (3.30)

or

[0] [1] [1] [1] [0] [0]
[1] [1] [0] [2] [1] [1]

[1] [1] [2] [] [1] [1]

x s s N s N M h n
x s s s N M h n

x N s N s N s N M h N n N

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

"
%

% # #
"

 (3.31)

where M is the length of the impulse response of the channel. The value of M needs to

be at least sixteen since that is the number of samples in the IEEE 802.11a cyclic prefix.

A higher value will increase the accuracy of the estimate while taking more time to

process. The value of M used was sixteen.

For an estimate of the impulse response of the channel to be obtained, the

transmitted signal must be known at the receiver. This is accomplished with the long

preamble. After synchronization, the receiver knows which received samples represent

the long preamble. By inserting the known long preamble samples for the sent signal in

(4.2), the equation can be solved for the impulse response of the channel. This can be

accomplished through the pseudo inverse approach:

 + += +S x h S n (3.32)

where

 1()T T+ −=S S S S (3.33)

is the pseudo inverse. Since the noise samples are assumed to be zero mean, the expected

value of the product of the noise samples with the pseudo inverse will be zero, leaving

the estimate of the channel impulse response to be:

 +=h S x . (3.34)

 50

A 64-point FFT was then taken to get the frequency response of the channel as

shown in Figure 30 for a Rayleigh channel with an rms delay spread of 70.5 10−×

seconds. Instead of the flat channel response of the ideal channel, this channel has a deep

fade in the beginning and the middle of the frequency band.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frequency

M
ag

ni
tu

de

Figure 30. Channel Frequency Response for Rayleigh Channel with RMS Delay
Spread of 75 10−× s and a SNR of 20 dB.

After the signal data has been brought back into the frequency domain, the channel

correction can be applied. Since convolution in the time domain is multiplication in the

frequency domain, the estimate of the received signal is obtained by dividing the received

signal by the channel frequency response. Figure 31 shows a received 16-QAM signal

constellation from a Rayleigh channel and the signal constellation after the channel

estimation has been applied. The pluses are the location of the BPSK signal field

samples and the dots are the 16-QAM data samples.

 51

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Q
ua

dr
at

ur
e

In−Phase

Signal
Data

(a)

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Q
ua

dr
at

ur
e

In−Phase

Signal
Data

(b)

Figure 31. Channel Estimation: (a) Uncorrected and (b) Corrected 16-QAM Signal
from a Rayleigh Channel with RMS Delay Spread of 85 10−× s and a SNR
of 20 dB.

Following channel estimation, the demodulation process is the same as the

transmission process described above except in reverse. Figure 32 presents the block

 52

diagram of the IEEE 802.11a receiver. The constraint length of the convolutional

decoder was three and hard decision decoding was employed. Coding gain will be seen if

the constraint length is extended or if soft decision decoding is applied.

Detection Synchroni-
zation

Cyclic Prefix
Removal FFT

Symbol
Demapping

(signalDemodulate11.m)

Deinterleaver
(deinterleaver11.m)

Convolutonal
Decoder

(deCode11.m)

Descrambler
(descrambler11.m) DATA

Channel
Estimation

(synch11.m) (demodData11.m)

Figure 32. IEEE 802.11a Baseband Receiver Block Diagram.

Once the signal had been demodulated, the bits were parsed according to the

standard to read the PLCP header. Figure 33 gives the format of the IEEE 802.11a

physical layer frame. The SIGNAL field, along with the 16 service bits, comprises the

PLCP header. The SIGNAL field informs the receiver of the parameters needed to

decode the following data symbols. It contains the length in bytes of the data sent from

the MAC layer to the physical layer. The length, which can be from 1 to 4095 bytes,

determines the number of OFDM data symbols to follow and allows the receiver to know

how many symbols should be received. The SIGNAL field also contains the data rate at

which all of the following symbols in the physical layer frame will be transmitted. The

SIGNAL field has a parity bit for basic error checking, in addition to the forward error

code correction that is applied to all OFDM symbols. The SIGNAL field is always

transmitted with BPSK modulation and rate ½ convolutional coding for a transmission

data rate of 6 Mbps. The OFDM symbol containing the SIGNAL field is transmitted at

the system’s most robust data rate to best ensure correct reception. If there is a bit error

in the data rate field or the length field, the following OFDM symbols will not be

decoded properly. At the end of the SIGNAL field, seven bits are added to initialize the

receiver’s scrambler, and nine bits are reserved for future use. These bits are termed the

service bits. The six tail bits added at the end are to return the convolutional encoder to

the zero state. Pad bits are added, when necessary, to insure there are enough bits to fill

an integer number of OFDM symbols.

 53

Figure 33. PPDU Frame Format (From Ref [1]).

The IEEE 802.16 signal is demodulated in a similar manner to the IEEE 802.11a

signal. Figure 34 depicts the block diagram for the implemented IEEE 802.16 signal

demodulation. The first significant difference is that a Reed-Solomon decoder is

employed following the binary convolutional decoder. The second significant difference

is that a 256-point FFT is taken to bring the time domain samples back into the frequency

domain for processing.

Detection Synchroni-
zation

Cyclic Prefix
Removal FFT

Symbol
Demapping

(signalDemodulate16.m)

Deinterleaver
(deinterleaver16.m)

Convolutonal
Decoder

(deCode16.m)

De-randomizer
(deRandomizer.m) DATA

Channel
Estimation

(synch16.m) (demodData16.m)

Reed-Solomon
Decoder
(deRS.m)

Figure 34. IEEE 802.16 Baseband Receiver Block Diagram.

B. RESULTS

This section presents the results from the simulation. The focus of the results is

the probability of detection of the intended signal for each correlator and the probability

of false alarm for the same correlator caused by the other signals. Frame synchronization

results will also be discussed along with the probability of demodulating an OFDM frame

header when the entire OFDM frame cannot be demodulated due to noise.

 54

1. IEEE 802.11a

An IEEE 802.11a signal was generated and sent through a Rayleigh channel with

a rms delay spread of Error! Objects cannot be created from editing field codes.s.

This rms delay spread is shorter than the cyclic prefix length of Error! Objects cannot

be created from editing field codes.and so ISI should not degrade reception. As

discussed earlier, a value longer than this would cause ISI. The results with ISI would

not be easily comparable due to the random nature of the ISI. A value was chosen to

show the system operating in a significant multipath environment. The detection

threshold was set to 0.3 to show the capability of the system in a low SNR environment.

The resulting probability of detection of each of the correlators is shown in Figure 35

where 10,000 packets were transmitted at each SNR value from 0 to 15 dB. The size of

the data portion of the packet was 100 bytes.

As can be seen in Figure 35, even at 0 dB in a Rayleigh channel, there were no

false detections by either the IEEE 802.11b or 802.l6 filters. By a SNR of 13 dB, the

probability of detection was 100%. Thus, a digital receiver can be used to distinguish

IEEE 802.11a signals from both IEEE 802.16 and IEEE 802.11b signals. Furthermore,

the IEEE 802.11a signals achieved 50% detection at a SNR of between 3 and 4 dB.

 55

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

802.11a
802.16
802.11b

Figure 35. Probability of Detection in a Rayleigh Channel with an RMS Delay
Spread of 85 10−× s and a detection threshold of 0.3.

Figure 36 shows the results of the parity bit check of the same IEEE 802.11a

signals as in Figure 35 where 10,000 packets were transmitted at each SNR value from 0

to 15 dB. The graph shows the probability of a correct parity bit check and the

probability of detection. The parity bit cannot be computed unless the signal is detected.

Thus, the probability of a good parity bit is always lower than the probability of

detection. Figure 36 shows that, if the packet is detected, the probability is high that the

parity bit check will pass. This indicates that if the signal is detected by the system, the

probability of bit error in the signal field will be low. Only at low SNRs does the

probability of a good parity bit check not match the probability of detection. The packet

header performs well at low SNR values because it is transmitted using BPSK

modulation with rate ½ coding.

 56

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

Signal Detected
Parity Check Good

Figure 36. Probability of Correct Parity Bit in a Rayleigh Channel with RMS Delay

Spread of 85 10−× s and a Detection Threshold of 0.3.

Typically, if the parity bit check detects an error, the frame will be discarded.

However, useful information can still be gathered even if the parity bit check fails. The

data rate and data length fields of the header can still be checked to see if the bit errors

may have left them unaffected. Table 5 shows the probability of a correct parity bit

check and the average bit error rate of the header for all packets detected, regardless of

the parity bit check result. At a SNR of 6 dB, 20% of the packets had a bad parity bit

check, but the average header BER was only 0.0029. Thus, most likely, few bit errors

occurred per packet header. Furthermore, a bit error in the tail subsection or the reserved

subsection of the header, which account for 7 of the 24 bits in the header, would not

affect the information of interest. The conclusion is that even when the parity bit check is

bad and a typical system would discard the packet, there may still be information

available regarding the packet.

 57

Table 5 also shows the average BER for the data transmitted following the header.

The synchronization result is also shown as an offset from the ideal start of the first data

symbol sample. To calculate the offset, the synchronization result of all detected packets

was used. The multipath fading causes a near-constant delay of two samples from the

actual start of the data symbol. The error caused by this delay is small enough to be

compensated for by the error correction code. The BER of the data, which was

transmitted at 12 Mbps using QPSK modulation, decreased as the SNR increased. Since

the data size within the packet was 800 bits, all packets fell well within the coherence

time of the channel with a Doppler spread of 50 Hz. The channel coherence time

according to (2.11) is 8.46 ms. The total packet transmission time is

 6 6

48 bits 800(2) bits8 μs 8 μs 158 μs << 8.46 ms
6 10 b/s 12 10 b/s

+ + + =
× ×

 (3.35)

where the first two terms are the time for the short and long preambles, the third term is

time to transmit the packet header symbol, and the last term is the time to transmit the

data after being encoded at rate ½. The velocity associated with 50 Hz of Doppler spread

is 3 m/s. This is applicable for an office environment where objects in the channel may

be moving, but not applicable for a mobile environment. From (4.5) and Table 5, the

packets were not significantly affected by the Doppler spread of the channel. Lastly, it is

important to note that the middle four columns of results in Table 5 do not change with a

change in the data modulation because the signal field is always transmitted using BPSK

modulation.

SNR Probability

of
Detection

Probability
of Good

Parity Check

Avg offset
from Ideal

Start

Average
Header BER

Average
Data BER

0 0.1413 0.0974 1.9887 0.1329 0.4733
1 0.2252 0.1784 1.9929 0.0781 0.4287
2 0.3078 0.2624 2 0.0458 0.354
3 0.4119 0.3819 2 0.0238 0.251
4 0.5305 0.508 2 0.0119 0.161
5 0.6461 0.6313 2 0.0061 0.0948
6 0.7555 0.7494 2 0.0029 0.0535
7 0.8509 0.8487 2 0.001 0.0295
8 0.9173 0.9165 2 0.0004 0.0164
9 0.9656 0.9655 2 0.0001 0.0089

10 0.9845 0.9845 2 0 0.005
11 0.9957 0.9957 2 0 0.0027

 58

SNR Probability
of

Detection

Probability
of Good

Parity Check

Avg offset
from Ideal

Start

Average
Header BER

Average
Data BER

12 0.999 0.999 2 0 0.0014
13 0.9998 0.9998 2 0 0.0007
14 1 1 2 0 0.0003
15 1 1 2 0 0.0002

Table 5. IEEE 802.11a Frame Demodulation Results in a Rayleigh Channel with
RMS Delay spread of 75 10−× s and Detection Threshold = 0.3.

To further illustrate the information available in the packet header when the parity

check fails, Table 6 shows the results of the received data rate field from the packet

header when the parity check was good and when the parity check was bad for signals

that were detected. The total number of times out of the 150,000 packets that the parity

check was good, when the signal was detected, was 114,737. The total number of times

that the parity check was bad, when the signal was detected, was 2,216. The table shows

that even with a bad parity check the data rate information in the packet header was still

received correctly over 50 % of the time and that the percentage that the misreading was

something other than zero was only 3.85 %. The data rate field is not sent in its

equivalent binary value but as a binary code to help prevent single bit errors from causing

a bad reception.

Received Data Rate Probability of Data Rate Value
When Parity Check Was Good

Probability of Data Rate Value
When Bad Parity Check Was Bad

No match 0.25 % 37.7 %
6 0.000878 % 0.517 %
9 0.0451 % 0.517 %
12 99.6 % 58.3 %
18 0.0 % 2.16 %
24 0.0 % 0.0 %
36 0.00555 % 0.0 %
48 0.000435 % 0.658 %
54 0.0000868 % 0.0 %

Table 6. Received Data Rate Value When the Packet Header Parity Check Failed and
the Actual Data Rate Value Sent Was 12.

The data length field was received correctly 76.49 % of the time when the signal

was detected. Within this, the data length field was received correctly, 98.93 % when the

 59

parity bit was correct and 36.64 % when the parity bit was incorrect. The data length

field is sent in its binary equivalent form and, thus, is more susceptible to bit errors than

the data rate field.

When the data rate and length fields of the preamble of the packet are received

correctly, all other information needed for demodulation of the packet is available. From

to Table 4, the coding rate and modulation of the data symbols can be deduced from the

data rate. The number of symbols in the packet can be calculated from the data rate and

the length fields according to the equation

 (16 8 6) /SYM MAC DBPSN L N= + × +⎡ ⎤⎢ ⎥ (3.36)

where DBPSN is defined in Table 4 for a given data rate, MACL is the length of the data in

bytes from the MAC layer, and ⎡ ⎤⎢ ⎥ is the ceiling function.

In summary, IEEE 802.11a signals can be successfully distinguished from IEEE

802.11b and IEEE 802.16 signals with no concern for processing time being wasted on

false detections in the 802.16 or 802.11b detectors. Furthermore, in low SNR

environments, significant packet header may be available even when the full packet

cannot be demodulated.

2. IEEE 802.11b

Figure 37 shows the results when an IEEE 802.11b signal was received. The

signal was transmitted 10,000 times for each SNR value from 0 to 30 dB. The length of

the data in each packet was 100 bytes. There were no false detections by either the

802.11a or 802.16 detectors. The rate of detection by the 802.11b correlator is

significantly higher because the correlation window is 128 samples long. However, the

resulting CRC failed nearly 100% of the time up to 5 dB of SNR. By 10 dB of SNR, the

probability of detection is 100%, but the probability of a correct CRC is 50%. This

compares to the IEEE 802.11a results where at 10 dB of SNR the signal detection and

probability of parity bit check were both over 90%. The probability of good CRC check

for the IEEE 802.11b signals is lower for two reasons. First, the 802.11a signal has error

 60

correction coding to catch and correct errors, where the 802.11b signal does not.

Secondly, the CRC is a more powerful algorithm for detecting bit errors than a parity bit

check.

From Table 7, the synchronization algorithm consistently chose the sample two

after the ideal for the start of the first sample of the header. Further, from a signal

detection standpoint, over 98% of the packets received with a SNR of 7 dB were

detected, but only 11.3% of those packets had a successful CRC while the packet header

BER was only 6%. Thus, for IEEE 802.11b signals, there is also significant opportunity

to demodulate the frame header even when the rest of the packet cannot be demodulated.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

802.11b Detection
802.11a Detection
802.16 Detection
Good CRC

Figure 37. Probability of IEEE 802.11b Signal Detection and Correct Parity Bit

Check in a Rayleigh Channel with RMS Delay Spread of 85 10−× s.

 61

SNR Probability
of Detection

Probability
of Good

CRC

Avg. Sample
Offset from
Start of data

Average
Header BER

Average
Data BER

0 0.8387 0 2 0.2835 0.5
1 0.8643 0 2 0.2518 0.4998
2 0.8859 0.0001 2 0.2205 0.5004
3 0.9178 0.0004 2 0.1843 0.5
4 0.9412 0.0034 2 0.1512 0.4988
5 0.9542 0.0111 2 0.1194 0.4951
6 0.9741 0.045 2 0.0868 0.4796
7 0.9849 0.113 2 0.0608 0.4475
8 0.9917 0.2507 2 0.0383 0.3811
9 0.997 0.4699 2 0.0212 0.272

10 0.9984 0.683 2 0.0105 0.1639
11 0.9995 0.8625 2 0.004 0.0722
12 0.9999 0.9499 2 0.0014 0.0272
13 1 0.9871 2 0.0004 0.0079
14 1 0.9973 2 0.0001 0.0026
15 1 0.9999 2 .0000708 0.0013
16 1 1 2 .000002083 0.0013
17 1 1 2 0 0.0012
18 1 1 2 0 0.0012
19 1 1 2 0 0.0013
20 1 1 2 0 0.0012

Table 7. IEEE 802.11b Signal Detection and Demodulation Results in a Rayleigh
Channel.

3. IEEE 802.16

An IEEE 802.16 signal was then run through the detector under the same

conditions as the IEEE 802.11a signals. The probability of detection results are plotted in

Figure 38. There were no false detections in either the 802.11a or 802.11b detectors.

The probability of detection for 802.16 signals is significantly higher at lower SNR levels

than with the 802.11 detector due to the longer correlation window. The frame

synchronization technique consistently chose the data sample two after the ideal start of

the header.

The channel estimation function for the IEEE 802.16 detection was not

implemented in this work. This does not impact the signal detection results but does

impact the cyclic redundancy check results. The probability of good CRC plotted in

Figure 38 is the worst case performance, and there would be significant improvement if

channel estimation was implemented. The probability of CRC shown here is better than

 62

that for IEEE 802.11b because the IEEE 802.16 standard implements rate ½

convolutional coding for the packet header where as the IEEE 802.11b standard does not

utilize forward error correction coding. Reed-Solomon coding is not implemented for the

packet header in IEEE 802.16. The IEEE 802.16 standard takes the best from the two

other standards in that it implements convolutional coding and then applies an eight-bit

CRC for additional error detection. This further reduces the receiver’s attempts to

demodulate packets where there has been a bit error in the packet header that could cause

the rest of the packet to be demodulated incorrectly.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

802.16 Detection
802.11a Detection
802.11b Detection
Good CRC

Figure 38. Probability of IEEE 802.16 Signal Detection and Correct Parity Bit Check

in a Rayleigh Channel with RMS Delay Spread of 85 10−× s.

4. Noise

To test the system’s probability of false alarm, a white noise interference signal

was transmitted with a signal power 5 dB lower than the data signals. This signal was

intended to act as a random interference signal in the frequency band of interest. The

 63

noise signal was a stream of 10,000 complex samples that was run 100 times over a SNR

range of 0 to 20 dB. With a threshold of 0.3, no false alarms were detected by either the

802.11a, 802.11b, or 802.16 detectors. These results are significantly better than the

theoretical predictions for the autocorrelation method with a window length of sixteen

presented in Chapter III. The theory predicted that autocorrelation with a length-sixteen

window with a threshold of 0.3 would result in false alarm rate of almost 80%. However,

the cross-correlation technique coupled with the search for multiple, consecutive peaks

had an observed fP of less than 410− . For autocorrelation with a window length of 64,

the theory predicted a fP of 45 10−× . The observed cross-correlation with the IEEE

802.16 short preamble resulted in a fP less than 410− . The fP for autocorrelation with a

window length of 128, as in the case of IEEE 802.11b signals, is 810− and enough

samples were not run to test if the cross-correlation could match that performance.

5. Summary

By looking at the detection probabilities at 0 dB for each of the signals, the impact

of the correlation window is apparent. As the correlation window size increases from 16

to 64 to 128, the probability of signal detection increases from 0.1, 0.6, and 0.8. Better

signal detection results could then be obtained for the IEEE 802.11a and IEEE 802.16

signals by correlating the entire short or first preamble. For the IEEE 802.11a case, the

window length would be 160 samples long. This would not aid in signal demodulation

but should produce significantly better signal detection results.

Table 8 through Table 10 summarize the probability of detection results for the

baseband digital receiver presented in this chapter. The three tables give the probabilities

of detection for each signal by all of the detectors for SNR values of 3, 7, and 15 dB,

respectively.

 64

Probability of Detection Signal Transmitted

802.11a 802.11b 802.16

802.11a 0.4119 0.0 0.0

802.11b 0.0 0.9178 0.0

802.16 0.0 0.0 0.8351

Table 8. Probability of Detection of IEEE 802.11a, IEEE 802.11b, and IEEE 802.16
Signals by a Digital Receiver with a SNR of 3 dB.

Probability of Detection Signal Transmitted

802.11a 802.11b 802.16

802.11a 0.8509 0.0 0.0

802.11b 0.0 0.9849 0.0

802.16 0.0 0.0 0.9874

Table 9. Probability of Detection of IEEE 802.11a, IEEE 802.11b, and IEEE 802.16
Signals by a Digital Receiver with a SNR of 7 dB.

Probability of Detection Signal Transmitted

802.11a 802.11b 802.16

802.11a 0.9957 0.0 0.0

802.11b 0.0 0.9999 0.0

802.16 0.0 0.0 1.0

Table 10. Probability of Detection of IEEE 802.11a, IEEE 802.11b, and IEEE 802.16
Signals by a Digital Receiver with a SNR of 15 dB.

 65

The most significant fact is that no false detections occurred by any of the

unintended detectors. This means that a single, baseband, digitial receiver can be

employed to detect and demodulate IEEE 802.11a, IEEE 802.11b, and IEEE 802.16

signals with no significant false alarm rates from either noise signals or an unintended

detector.

The frame synchronization method was also shown to work consistently for all

three signals. Table 11 shows the percentage of detected signals where the frame

synchronization technique chose as the first sample of the packet header a sample that

was two sample periods after the actual first sample of the packet header. For this

channel, a simple subtraction of two applied to the synchronization result would have led

to almost perfect frame synchronization over a wide range of SNR values. Further study

could be conducted to determine, over a range of multipath channel conditions, an

average frame offset that could be applied to improve bit error rates in a wider range of

channel conditions.

Signal % frame starts two samples

after the ideal start
IEEE 802.11a 99.998 %
IEEE 802.16 100 %
IEEE 802.11b 100 %

Table 11. Frame Offset Results for all Three Signals in a Rayleigh Channel.

This chapter presented the simulation model used to analyze the efficacy of a

digital receiver to detect multiple wireless networking signals. The simulation results

indicate that a single, digital receiver can be used to detect, classify and frame

synchronize to multiple wireless networking signals with an acceptable rate of false alarm

from unintended signals.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

V. CONCLUSIONS

The objective of this thesis was to investigate if a single, digital, baseband

receiver could detect, classify, and synchronize to IEEE 802.11a, IEEE 802.16, and IEEE

802.11b signals with minimal rates of false alarm and high rates of detection. The packet

information available when an IEEE 802.11a signal was detected, but could not be fully

demodulated, was also investigated.

A. SUMMARY OF THE WORK DONE

First, a simulation model for the generation and demodulation of IEEE 802.11a

OFDM signals was implemented in MATLAB. Second, a partial model for the

generation and demodulation of IEEE 802.116 OFDM signals was developed in

MATLAB. Third, a signal detection and synchronization model was developed to test

the cross-correlation results of each signal by the other detector. Additionally, an attempt

was made to define the probability density functions of the decision statistic at the

receiver when a signal of interest was present and when only noise was present. From

this result, a ROC curve was determined to select thresholds based upon desired

probabilities of detection and false alarm. Lastly, the signal generation, detection,

demodulation models were put together with a Rayleigh channel model to gather

detection and synchronization results.

B. SIGNIFICANT RESULTS

A single, digital, baseband receiver can separately detect and classify IEEE

802.11a, IEEE 802.11b, and IEEE 802.16 signals from each other. A bank of correlators

matched to a symbol of each signal’s preamble was shown to be a successful

implementation for distinguishing IEEE 802.11a, IEEE 802.11b, and IEEE 802.16

signals from each other with negligible probabilities of false alarm by the unintended

detector. The result of this is that a single digital receiver attached to an air interface

capable of receiving and sampling all three signals can detect and demodulate each signal

 68

without concern for wasting processing power or missing signals due to false detections.

Further, the results showed that all signals have very low false detection rates due to a

Gaussian noise input.

A frame synchronization technique for IEEE 802.11a and IEEE 802.16 signals

that utilized the output of the detection algorithm was demonstrated to be consistent and

robust in a multipath fading channel at low SNR values. This allows a simple correction

factor to be applied to the frame synchronization result for nearly perfect frame

synchronization. Superior frame synchronization will result in lower bit error rates.

An investigation into the packet information available in poor channel

environments, where the full packet could not be properly demodulated, suggests that

significant packet information is available in the received packet header that could be of

interest in the signal intelligence domain.

C. FUTURE WORK

There are several avenues for future work from this thesis. First, work can be

done to improve the simulation models. For the IEEE 802.11a model, frequency offset

calculation could be added. With the IEEE 802.16 model, a significant amount of future

improvements could be made such as channel estimation, frequency offset, and

implementing many of the optional features of the standard. Additionally, for both

models, functions could be added to emulate layer-two functionality towards building a

more comprehensive transmitter/receiver application.

Actual transmitted radio signals could be collected in the lab. The baseband

version of the collected signals could be processed by the models. This would allow for a

more in-depth investigation into signal detection results for weak signals, as well as a

good check of the accuracy of the models.

Finally, further study could be done concerning the statistical characteristics of

the decision statistic when the signal is present and when noise is present. This work

could be done to tailor a decision statistic for reception in a specific signal intelligence

environment.

 69

APPENDIX

This appendix contains the MATLAB code used in the simulations. Figure 39

shows the function call order to run the simulations. The M-file Detector.m is the main

file where all parameters are entered and which calls all other functions. This file also

processes the results for display. Detector.m calls one of the three signal generation

functions depending upon the parameter entered. The output of that function is

manipulated by Channels.m depending upon the channel parameter entered. The output

of Channels.m is sent to all the detection functions. If any of these functions make a

detection, synchronization will be attempted. If synchronization is successful,

demodulation will be attempted.

Detector.m
(main function that calls others and

gathers results)

createDownLinkFrame.m
(create 802.16 signal)

buildFrame.m
(create 802.11a signal)

build80211b.m
(create 802.11b signal)

Channels.m
(filter signal through channel)

snych11.m
(perform cross-correlation,
frame synchronization, and

channel estimation)

snych11b.m
(perform cross-correlation,

frame synchronization)

snych16.m
(perform cross-correlation,

frame synchronization)

demodData11.m
(demodulate 802.11a signal)

demodData16.m
(demodulate 802.16 signal)

demodData11b.m
(demodulate 802.11b signal)

Figure 39. MATLAB Code Function Call Signal Flow for Simulations

 70

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Detector.m
%
% call functions to generate wireless networking waveform
% run generated signal through a channel
% then check for detections and sychronization
% if so, then demodulate data;
% Note: does not have complete error checking, so if too few runs or
% only at low SNRs may cause failures because no signals are be detected
% and so it has no data to process.
%
% Input: (see input parameters below)
%
% Output:
% Header BER
% Data BER
% Frame synchronization result
%
% Author: Keith Howland
% Created: 23 Jul 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%==
% set input parameters
clear;clc;close all
sent_data_length=100;%in bytes;max is 4095 for 802.11a
intro_length=500;
max_run = 3;
max_snr=5;
Th=.3; %detection threshold
interference_variance = .1;
sig='11a'; %802.11a->11a; 802.11b->11b;802.16->16;noise->noise
channel = 'rayleigh'; %'ideal';'awgn';'rayleigh'
sent_data_rate=12; % for 802.16
mod_number_sent=2; % for 802.11
%==

%===
%set up paths to directories for different signals
addpath('H:\thesis\Detector\test\80211\Transmitter')

 71

addpath('H:\thesis\Detector\test\80216\Transmitter')
addpath('H:\thesis\Detector\test\11b\Transmitter')
addpath('H:\thesis\Detector\test\80211\Receiver')
addpath('H:\thesis\Detector\test\80216\Receiver')
addpath('H:\thesis\Detector\test\11b\Receiver');
%==

%==
%run simulation so max_run times for each SNR up to max_snr
for SNR = 0:max_snr
 for run = 1:max_run
 %tic
 disp([num2str(SNR) ' ' num2str(run)]) %where am I
 %create input signal
 if strcmp(sig,'11a')
 [signal,PLCP_bits,data_bits] = ...
 buildFrame(sent_data_rate,sent_data_length);
 preamble_length = 320;
 elseif strcmp(sig,'16')
 [signal,fch_bits,data_bits] = ...
 createDownLinkFrame(mod_number_sent, sent_data_length);
 preamble_length = 640;
 elseif strcmp(sig,'11b')
 [signal,sent_plcp,data_bits] = build80211b(sent_data_length);
 signal = signal.'*.1;%match power to other signals
 preamble_length = 144;
 else strcmp(sig,'noise');
 signal = complex(randn(sent_data_length,1),...
 randn(sent_data_length,1))*.01;
 end

 %add interference beginning
 [output, actual_start_of_data] = beginningInterference(signal, ...
 preamble_length,intro_length,interference_variance);

 %go through channel
 chan_output = Channels(output,channel,SNR);

 % go to receivers
 %11a
 [signal_detected11a(run,SNR+1),start_of_data11a,H] = ...
 synch11(chan_output,Th);

 if signal_detected11a(run,SNR+1) == 1
 [rec_data_80211,rec_signal,parity_bit(run,SNR+1), ...

 72

 rec_data_rate(run,SNR+1), rec_data_length(run,SNR+1),...
 rec_tail(run,SNR+1)] = demodData11(chan_output,...
 start_of_data11a,H,sent_data_rate, sent_data_length);

 frame_offset11(run,SNR+1) = start_of_data11a - ...
 actual_start_of_data;

 if strcmp(sig,'11a') ~=1
 continue
 elseif rec_data_80211 == 0
 rec_data_80211 = zeros(length(data_bits),1);
 end

 [er,BER_PLCP11a(run,SNR+1)] = biterr(PLCP_bits,rec_signal');
 [num_error, BER_80211data(run,SNR+1)] = ...
 biterr(data_bits,rec_data_80211);
 end

 %16
 [signal_detected16(run,SNR+1),H,start_of_data16] = ...
 synch16(chan_output,Th);
 frame_offset16(run,SNR+1) = start_of_data16 - actual_start_of_data;
 if signal_detected16(run,SNR+1) ==1
 [rec_data_80216,rec_fch,HCS_check(run,SNR+1)] = ...
 demodData16(chan_output,H, ...
 start_of_data16, mod_number_sent);
 if strcmp(sig,'16') ~=1
 continue
 elseif rec_data_80216 == 0
 rec_data_80216 = zeros(length(data_bits),1);
 end
 [fch_be, BER_fch(run,SNR+1)] = biterr(fch_bits,rec_fch');
 [data_be, BER_80216data(run,SNR+1)] = ...
 biterr(data_bits(:),rec_data_80216(:));
 end

 %11b
 [signal_detected11b(run,SNR+1),start_of_data11b] = ...
 synch11b(chan_output,Th);
 frame_offset11b(run,SNR+1) = ...
 start_of_data11b - actual_start_of_data;
 if signal_detected11b(run,SNR+1) ==1
 [data_rate, num_data_octets,rec_data,rec_plcp,...
 CRC_result11b(run,SNR+1)] = ...
 demodData11b(chan_output,start_of_data11b);

 73

 if strcmp(sig,'11b') ~=1
 continue
 elseif rec_data == 0
 rec_data = zeros(length(data_bits),1);
 elseif length(data_bits) ~= length(rec_data)
 pad = length(data_bits) - length(rec_data);
 rec_data = [rec_data; zeros(pad,1)];
 end
 %calculate BER
 [plcp_11b_errors,BER_PLCP11b(run,SNR+1)] = ...
 biterr(sent_plcp,rec_plcp);
 [data11b_errors,BER_80211bdata(run,SNR+1)] = ...
 biterr(data_bits,rec_data');
 end
%toc
 end %end run loop
end %end SNR Loop
%==
===========

%==
===========
%RESULTS
%==
==========
%this is Pd when signal is present
%and Pfa when noise is present
prob_detect_11a = sum(signal_detected11a)/max_run;
prob_detect_16 = sum(signal_detected16)/max_run;
prob_detect_11b = sum(signal_detected11b)/max_run;
figure;plot(0:max_snr,prob_detect_11a,'*-',0:max_snr, ...
 prob_detect_16,'d-', 0:max_snr,prob_detect_11b,'s-');
legend('802.11a/g','802.16','802.11b');
xlabel('SNR (dB)');
if strcmp(sig,'noise')
 ylabel('Probability of False Alarm')
else
 ylabel('Probability of Detection')
end

%only run these results if signal was present
if strcmp(sig,'noise')
 return
elseif strcmp(sig,'11a')

 74

 prob_miss_11a = (max_run - sum(signal_detected11a))/max_run;
 prob_parity_okay = sum(parity_bit)/max_run;

 figure;plot(0:max_snr,prob_miss_11a,'*-');legend('802.11a')
 xlabel('SNR (dB)');ylabel('Probability of Miss')

 figure;plot(0:max_snr,prob_detect_11a,'*-',0:max_snr,...
 prob_parity_okay,'d-');
 legend('Signal Detected','Parity Check Good');
 xlabel('SNR (dB)');ylabel('Probability of Occurence')

 sd11a = signal_detected11a ==1;%make logicals
 %only take those BERs where signal was detected
 for i = 1:size(sd11a,2)
 c = BER_PLCP11a(:,i);
 d = BER_80211data(:,i);
 fo = frame_offset11(:,i);
 fo2=fo(sd11a(:,i));
 e = c(sd11a(:,i));
 f= d(sd11a(:,i));
 avg_offset(i) = mean(fo2);
 avg_BER_PLCP(i) = mean(e);
 avg_BER_80211(i) = mean(f);
 end

 %make table for 80211a/g results: SNR,Parity,BER_PLCP,BER_DATA
 result11(:,1)=0:max_snr;
 result11(:,2)=prob_detect_11a;
 result11(:,3)=prob_parity_okay';
 result11(:,4)= avg_offset;
 result11(:,5)=avg_BER_PLCP;
 result11(:,6)=avg_BER_80211;

 %make table of SIGNAL content for specific SNR
 rec_SIG(:,1) = rec_data_rate(:,1);
 rec_SIG(:,2) = rec_data_length(:,1);
 rec_SIG(:,3) = rec_tail(:,1);

 result11
 rec_SIG
elseif strcmp(sig,'16')
 prob_miss_16 = (max_run - sum(signal_detected16))/max_run;
 prob_HCS = sum(HCS_check)/max_run;

 figure;plot(0:max_snr,prob_detect_16,'d-',0:max_snr, ...

 75

 prob_detect_11a,'*-', 0:max_snr,prob_detect_11b,'s-', ...
 0:max_snr,prob_HCS,'o-');
 legend('802.16 Detection','802.11a Detection','802.11b Detection', ...
 'Good CRC');
 xlabel('SNR (dB)');ylabel('Probability of Occurence')

 sd16 = signal_detected16 ==1;
 for i = 1:size(sd16,2)
 fo = frame_offset16(:,i);
 fo2=fo(sd16(:,i));
 avg_offset16(i) = mean(fo2);
 end
 avg_offset16

elseif strcmp(sig,'11b')
 prob_miss_11b = (max_run - sum(signal_detected11b))/max_run;
 prob_CRC11b = sum(CRC_result11b)/max_run;

 sd11b = signal_detected11b ==1;%make logicals
 %only take those BERs where signal was detected
 for i = 1:size(sd11b,2)
 c = BER_PLCP11b(:,i);
 d = BER_80211bdata(:,i);
 fo = frame_offset11b(:,i);
 fo2=fo(sd11b(:,i));
 e = c(sd11b(:,i));
 f= d(sd11b(:,i));
 avg_offset11b(i) = mean(fo2);
 avg_BER_PLCP11b(i) = mean(e);
 avg_BER_80211b(i) = mean(f);
 end

 %make table for 80211a/g results: SNR,Parity,BER_PLCP,BER_DATA
 result11b(:,1)=0:max_snr;
 result11b(:,2)=prob_detect_11b;
 result11b(:,3)=prob_CRC11b;
 result11b(:,4)= avg_offset11b;
 result11b(:,5)=avg_BER_PLCP11b;
 result11b(:,6)=avg_BER_80211b;
 result11b

 figure;plot(0:max_snr,prob_detect_11b,'d-',0:max_snr, ...
 prob_detect_11a,'*-', 0:max_snr,prob_detect_16,'s-', ...
 0:max_snr,prob_CRC11b,'o-');
 legend('802.11b Detection','802.11a Detection','802.16 Detection', ...

 76

 'Good CRC');
 xlabel('SNR (dB)');ylabel('Probability of Occurence')
end

 77

function [output] = Channels(input,channel,SNR)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Channels.m
%
% run OFDM time domain samples through channels
%
% Input: %
% input: OFDM time domain samples
% channel: either awgn or Rayleigh as text string
% SNR: signal to noise ratio
% Output: %
% output: channel filtered time domain samples
%
% Author: Keith Howland
% Created: 03 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=================================%
%send signal through channel
%=================================%
if strcmp('awgn',channel)
 %Additive White Gaussian Noise Channel
 output = awgn(input,SNR,'measured');
elseif strcmp('rayleigh',channel)
 %Rayleigh Channel with Additive White Gaussian Noise
 chan = rayleighchan(1/(20*10^6),50);
 chan.pathdelays=[0 1e-7];
 chan.avgpathgaindb=[0 0];
 y = filter(chan,input);
 output=awgn(y,SNR,'measured');
else
 output = input;
end

 78

function [output,PLCP_bits,data] = ...
 buildFrame(sent_data_rate, sent_data_length)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% buildFrame.m
%
% Create OFDM time domain signal samples for transmission
%
% Input: %
% sent_data_rate: sent data rate
% sent_data_length: length in bytes of data from MAC layer
% Output: %
% output: OFDM time domain signal samples
% PLCP_bits: PLCP signal field bits
% data: original data bits from MAC layer
%
% Author: Keith Howland
% Created: 29 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=================================%
%data bits are random ones and zeros
%build PLCP Header
%make time domain OFDM samples
%=================================%
data = randint(sent_data_length*8,1);
[PLCP,PLCP_bits] = buildPLCPHeader(sent_data_length,sent_data_rate);
time_sig = makeData(data,sent_data_length,sent_data_rate);

%get preambles
load short_preamble_time_domain
load long_preamble_time_domain

%=================================%
%final time frame starts with short and long preambles then signal field
%then data
%=================================%
output = [short_preamble_time_domain(1:160); ...

 79

 short_preamble_time_domain(161)+long_preamble_time_domain(1);...
 long_preamble_time_domain(2:160); long_preamble_time_domain(161) ...
 + PLCP(1); PLCP(2:80); PLCP(81) + time_sig(1); time_sig(2:end)];

 80

function [PLCP_Header,PLCP_bits] = buildPLCPHeader(length,data_rate)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% buildPLCPHeader.m
%
% this function constructs the PLCP Header per the 802.11a standard;
% called by buildFrame
%
% Input: %
% length: length in octets of MAC layer input
% data_rate: transmission data rate
%
% Output: %
% PLCP_Header: full OFDM symbol of PLCP header
% PLCP_bits: bits of the PLCP signal field for comparison
% with received signal field bits
%
% Author: Keith Howland
% Created: 20 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%this section constructs the contents of the SIGNAL field of 802.11a
%standard

if data_rate == 6
 signal(1:4) = [1 1 0 1];
elseif data_rate == 9
 signal(1:4) = [1 1 1 1];
elseif data_rate == 12
 signal(1:4) = [0 1 0 1];
elseif data_rate == 18
 signal(1:4) = [0 1 1 1];
elseif data_rate == 24
 signal(1:4) = [1 0 0 1];
elseif data_rate == 36
 signal(1:4) = [1 0 1 1];
elseif data_rate == 48
 signal(1:4) = [0 0 0 1];
elseif data_rate == 54
 signal(1:4) = [0 0 1 1];
end

 81

signal(5) =0; %reserved in standard

PLCP_length = fliplr((dec2bin(length,12))); %LSB bit first per standard
for i = 1:12; %field length is 12
 signal(5+i) = str2double(PLCP_length(i)); %convert str to num;
end

%parity calculation
if rem(sum(signal(1:17)),2)== 0
 signal(18) = 0;
else
 signal(18) =1;
end

signal(19:24) = zeros(1,6); %Signal tail bits; all bits to zero
PLCP_bits = signal;
%always encode at 1/2 rate; encoder state is 0
coded_signal = ConvolutionCoding11(signal,.5);

%next data is interleaved
interleaved = interleaver11(coded_signal,48,1); %1 is Number of data bits
 % per subcarrier
modulated_signal = modData11(interleaved,2); %always modulate with BPSK

%create symbol
symbol = createSymbol11(modulated_signal,1);
symbol=symbol';
%get time domain
time_symbol = ifft(symbol);
%cyclically extend and window to match Annex G example
PLCP_Header = [time_symbol(49:64); time_symbol ;time_symbol(1)];
PLCP_Header(1) = PLCP_Header(1)/2;%window to match Appendix G of standard
PLCP_Header(81) = PLCP_Header(81)/2;

 82

function output = ConvolutionCoding11(bits,code_rate)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% ConvolutionCoding11.m
%
% performs convolution encoding for rates 1/2;
% for 2/3 and 3/4 by puncturing the 1/2 coded data;
% creates encoder for constraint length 7 and
% generator polynomials 133 and 177 as per standard p.16 of PHY
%
% Input: %
% bits: scrambled bits
% code_rate: rate for coding:1/2,3/4,2/3
%
% Output: %
% output: encoded bits
%
% Author: Keith Howland
% Created: 20 Apr 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trellis = poly2trellis(7,[133 171]);

if code_rate == .5 %rate 1/2 encoding
 output = convenc(bits,trellis);
elseif code_rate == .66 %rate 2/3 through puncturing 1/2
 output = convenc(bits,trellis,[1 1 1 0]);
elseif code_rate == .75 %rate 3/4 through puncturing 1/2
 output = convenc(bits,trellis,[1 1 1 0 0 1]);
end

 83

function [OFDM_symbol] = createSymbol11(modulated_data,pilot_index)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% createSymbol.m
%
% create the OFDM symbol; put data into the symbol. Then add pilots and
% nulls. then map values for IFFT per standard
%
% Input: %
% modulated_data: symbol mapped complex values
% pilot_index: index where pilot is being placed in data
%
% Output: %
% OFDM_symbol: OFDM symbol
%
% Author: Keith Howland
% Created: 15 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbol(1,:) = [-32:-1 0 1:31]; %this is just for my visualization
symbol(2,:) = zeros(1,64); %reserve space

%add data
symbol(2,[7:11,13:25,27:32,34:39,41:53,55:59])= modulated_data;

%add pilots
symbol = insertPilot(symbol(2,:),pilot_index);

%remap for IFFT per figure 109 in standard
OFDM_symbol(1)=symbol(33);
OFDM_symbol(2:27)=symbol(34:59);
OFDM_symbol(28:38)=zeros(1,11);
OFDM_symbol(39:64)=symbol(7:32);

 84

function [data] = insertPilot(data,i)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% insertPilot.m
%
% this function inserts pilot symbols. Four pilots per symbol.
% cyclic through the 32 sets
% Note:%the pilots for the signal field are hard coded in, so i starts
% with 2
%
% Input: %
% data: symbol mapped values
% i: index where pilot is being placed in data
%
% Output: %
% data: OFDM symbol containing pilots in the correct indices
%
% Author: Keith Howland
% Created: 22 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pn = [1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,...
 1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,-1,1,...
 -1,-1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,...
 -1,-1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,...
 -1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1];

%cycle through pn codes
if i > 127
 i = rem(i,127);
 if i ==0;
 i = 127;
 end
end

%insert pilots into data
data(12)=pn(i)*1;
data(26)=pn(i)*1;
data(40)=pn(i)*1;
data(54)=pn(i)*-1;

 85

function [output] = interleaver11(bits,Ncbps,Nbpsc)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% interleaver11.m
%
% %this function performs data interleaving per page 17 of PHY section of
% 802.11a standard
% these were calculated using interleaverCalculator.m
%
% Input: %
% bits: encoded bits
% Ncbps: number of coded bits per symbol
% Nbpsc: number of coded bits per subcarrier
%
% Output: %
% output: interleaved bits
%
% Author: Keith Howland
% Created: 15 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if Ncbps == 48 && Nbpsc ==1
 first =bits([1,17,33,2,18,34,3,19,35,4,20,36,5,21,37,6,22,38,7,23, ...
 39,8,24,40,9,25,41,10,26,42,11,27,43,12,28,44,13,29,45,14,30, ...
 46,15,31,47,16,32,48]);
 output = first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, ...
 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39, ...
 40,41,42,43,44,45,46,47,48]);
elseif Ncbps == 96 && Nbpsc ==2
 first = bits([1,17,33,49,65,81,2,18,34,50,66,82,3,19,35,51,67,83, ...
 4,20,36,52,68,84,5,21,37,53,69,85,6,22,38,54,70,86,7,23,39,55, ...
 71,87,8,24,40,56,72,88,9,25,41,57,73,89,10,26,42,58,74,90,11, ...
 27,43,59,75,91,12,28,44,60,76,92,13,29,45,61,77,93,14,30,46,62, ...
 78,94,15,31,47,63,79,95,16,32,48,64,80,96]);
 output = first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, ...
 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39, ...
 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59, ...
 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79, ...
 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96]);
elseif Ncbps == 192 && Nbpsc == 4
 first = bits([1,17,33,49,65,81,97,113,129,145,161,177,2,18,34,50, ...

 86

 66,82,98,114,130,146,162,178,3,19,35,51,67,83,99,115,131,147, ...
 163,179,4,20,36,52,68,84,100,116,132,148,164,180,5,21,37,53, ...
 69,85,101,117,133,149,165,181,6,22,38,54,70,86,102,118,134, ...
 150,166,182,7,23,39,55,71,87,103,119,135,151,167,183,8,24,40, ...
 56,72,88,104,120,136,152,168,184,9,25,41,57,73,89,105,121,137, ...
 153,169,185,10,26,42,58,74,90,106,122,138,154,170,186,11,27, ...
 43,59,75,91,107,123,139,155,171,187,12,28,44,60,76,92,108, ...
 124,140,156,172,188,13,29,45,61,77,93,109,125,141,157,173, ...
 189,14,30,46,62,78,94,110,126,142,158,174,190,15,31,47,63,79, ...
 95,111,127,143,159,175,191,16,32,48,64,80,96,112,128,144,160, ...
 176,192]);
 output= first([1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,18,17,20,19, ...
 22,21,24,23,25,26,27,28,29,30,31,32,33,34,35,36,38,37,40,39, ...
 42,41,44,43,46,45,48,47,49,50,51,52,53,54,55,56,57,58,59,60, ...
 62,61,64,63,66,65,68,67,70,69,72,71,73,74,75,76,77,78,79,80, ...
 81,82,83,84,86,85,88,87,90,89,92,91,94,93,96,95,97,98,99,100, ...
 101,102,103,104,105,106,107,108,110,109,112,111,114,113,116, ...
 115,118,117,120,119,121,122,123,124,125,126,127,128,129,130, ...
 131,132,134,133,136,135,138,137,140,139,142,141,144,143,145, ...
 146,147,148,149,150,151,152,153,154,155,156,158,157,160,159, ...
 162,161,164,163,166,165,168,167,169,170,171,172,173,174,175, ...
 176,177,178,179,180,182,181,184,183,186,185,188,187,190,189, ...
 192,191]);
elseif Ncbps == 288 && Nbpsc == 6
 first = bits([1,17,33,49,65,81,97,113,129,145,161,177,193,209,225, ...
 241,257,273,2,18,34,50,66,82,98,114,130,146,162,178,194,210, ...
 226,242,258,274,3,19,35,51,67,83,99,115,131,147,163,179,195, ...
 211,227,243,259,275,4,20,36,52,68,84,100,116,132,148,164,180, ...
 196,212,228,244,260,276,5,21,37,53,69,85,101,117,133,149,165, ...
 181,197,213,229,245,261,277,6,22,38,54,70,86,102,118,134,150, ...
 166,182,198,214,230,246,262,278,7,23,39,55,71,87,103,119,135, ...
 151,167,183,199,215,231,247,263,279,8,24,40,56,72,88,104,120, ...
 136,152,168,184,200,216,232,248,264,280,9,25,41,57,73,89,105, ...
 121,137,153,169,185,201,217,233,249,265,281,10,26,42,58,74,90, ...
 106,122,138,154,170,186,202,218,234,250,266,282,11,27,43,59, ...
 75,91,107,123,139,155,171,187,203,219,235,251,267,283,12,28, ...
 44,60,76,92,108,124,140,156,172,188,204,220,236,252,268,284,13, ...
 29,45,61,77,93,109,125,141,157,173,189,205,221,237,253,269,285, ...
 14,30,46,62,78,94,110,126,142,158,174,190,206,222,238,254,270, ...
 286,15,31,47,63,79,95,111,127,143,159,175,191,207,223,239,255, ...
 271,287,16,32,48,64,80,96,112,128,144,160,176,192,208,224,240, ...
 256,272,288]);
 output = first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21, ...
 19,23,24,22,26,27,25,29,30,28,32,33,31,35,36,34,39,37,38,42,40, ...
 41,45,43,44,48,46,47,51,49,50,54,52,53,55,56,57,58,59,60,61,62, ...

 87

 63,64,65,66,67,68,69,70,71,72,74,75,73,77,78,76,80,81,79,83,84, ...
 82,86,87,85,89,90,88,93,91,92,96,94,95,99,97,98,102,100,101, ...
 105,103,104,108,106,107,109,110,111,112,113,114,115,116,117, ...
 118,119,120,121,122,123,124,125,126,128,129,127,131,132,130, ...
 134,135,133,137,138,136,140,141,139,143,144,142,147,145,146, ...
 150,148,149,153,151,152,156,154,155,159,157,158,162,160,161, ...
 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177, ...
 178,179,180,182,183,181,185,186,184,188,189,187,191,192,190, ...
 194,195,193,197,198,196,201,199,200,204,202,203,207,205,206, ...
 210,208,209,213,211,212,216,214,215,217,218,219,220,221,222, ...
 223,224,225,226,227,228,229,230,231,232,233,234,236,237,235, ...
 239,240,238,242,243,241,245,246,244,248,249,247,251,252,250, ...
 255,253,254,258,256,257,261,259,260,264,262,263,267,265,266, ...
 270,268,269,271,272,273,274,275,276,277,278,279,280,281,282, ...
 283,284,285,286,287,288]);
end

 88

function [time_matrix] = makeData(input,len,data_rate)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% makeData.m
%
% this function works on the data bits not including the Header. From
% data rate you get all necessary information for coding.
% Nbpsc: %Number of coded bits per OFDM symbol
% Ncbps: %Number of data bits per OFDM symbol
% modulation: modulation scheme described by M-ary number:
% 2=BPSK; 4=QPSK; 16=16_QAM 64=64_QAM
% coding_rate: %convolution encoding rate
% Then service bits and tail bits are added to complete input stream
% then data is padded to match IFFT size. Then data is scrambled, coded,
% interleaved,modulated. Pilots and nulls are inserted. Then IFFT is
% taken and cyclic prefix is prepended.
%
% Input: %
% input: data bits from MAC layer
% len: number of data bits from MAC layer
% data_rate: transmission data rate
%
% Output: %
% time_matrix: time domain sammple values including cyclic
% prefix
%
% Author: Keith Howland
% Created: 15 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if data_rate == 6
 Nbpsc = 1;
 Ncbps =48;
 Ndbps =24;
 modulation = 2;
 coding_rate = .5;
 elseif data_rate ==9;
 Nbpsc = 1;
 Ncbps =48;
 Ndbps =36;
 modulation = 2;

 89

 coding_rate = .75;
elseif data_rate==12;
 Nbpsc = 2;
 Ncbps =96;
 Ndbps =48;
 modulation = 4;
 coding_rate = .5;
 elseif data_rate ==18;
 Nbpsc = 2;
 Ncbps =96;
 Ndbps =72;
 modulation = 4;
 coding_rate = .75;
 elseif data_rate==24;
 Nbpsc = 4;
 Ncbps =192;
 Ndbps =96;
 modulation = 16;
 coding_rate = .5;
 elseif data_rate==36;
 Nbpsc = 4;
 Ncbps =192;
 Ndbps =144;
 modulation = 16;
 coding_rate = .75;
 elseif data_rate==48;
 Nbpsc = 6;
 Ncbps =288;
 Ndbps =192;
 modulation = 64;
 coding_rate = .66;
 elseif data_rate==54;
 Nbpsc =6;
 Ncbps =288;
 Ndbps =216;
 modulation = 64;
 coding_rate = .75;
end

%reshape data so block length after encoding and modulation is 48 bits
%pad the data so coded data matches FFT size; see section 17.3.5.4

Nsym = ceil((16+8*len+6)/Ndbps);
Ndata = Nsym * Ndbps;
Npad = Ndata - (16+8*len+6);

 90

%prepend SERVICE bits (16 zeros)
%and postpend PPDU tail bits (6 zeros) to data
DATA = [zeros(16,1); input; zeros(6,1); zeros(Npad,1)];

scrambled_data = Scrambler(DATA);
%tail bits are replaced with non-scrambled zero bits; section 17.3.5.2
scrambled_data(length(input)+16+1:length(input)+16+1+6-1) = zeros(1,6);
coded_data = ConvolutionCoding11(scrambled_data,coding_rate);

DATA_blocks = reshape(coded_data,Ncbps,Nsym); %reshape into blocks

%take each block of data and interleave it, modulated it, insert
%piolts; freq_matrix is final data in frequency form
time_matrix=zeros(80,Nsym);
for i =1:Nsym
 block = DATA_blocks(:,i); %take first block
 int_block = interleaver11(block,Ncbps,Nbpsc); %interleave
 mod_block = modData11(int_block,modulation); %modulate
 %because signal pilot hard coded in PLCP so start at 2: (i+1)
 symbol = createSymbol11(mod_block,i+1);
 time_symbol = ifft(symbol,64); %bring into time domain
 time_matrix(:,i) = [time_symbol(49:64) time_symbol];%add cyclic prefix
end
time_matrix=time_matrix(:);

 91

function [output] = modData11(bits,mod)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% modData11.m
%
% this function takes the input bits and modulates them according to given
% modulation technique: BPSK, QPSK, 16-QAM, 64-QAM
% Kmod is a normalizatio factor to achieve the same average power for all
% mappings
% Note: this only works with MATLAB version R2007a or higher
% Note:replace sqrt with actual numbers for faster performance
%
% Input: %
% bits: interleaved bits
% mod: modulation schemes by their M-ary number;
%
% Output: %
% output: complex valued symbols
%
% Author: Keith Howland
% Created: 15 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%BPSK
if mod == 2
 a = bits ==0;
 bits(a)=-1;
 %for BPSK Kmod = 1;
 output = bits;
end

%QPSK
if mod == 4
 bits = reshape(bits,2,length(bits)/2);
 g = modem.qammod('M', 4, 'PhaseOffset', 0, 'SymbolOrder',...
 'user-defined','SymbolMapping',[1 0 3 2], 'InputType', 'bit');
 qpsk = modulate(g,bits);
 Kmod = 1/sqrt(2);
 output = qpsk*Kmod;
end

 92

%16_QAM
if mod == 16
 bits = reshape(bits,4,length(bits)/4);

 g = modem.qammod('M',16, 'SymbolOrder','user-defined', ...
 'SymbolMapping',[2 3 1 0 6 7 5 4 14 15 13 12 10 11 9 8], ...
 'InputType','bit'); % Create a modulator object
 qam16 = modulate(g,bits); % modulate the signal y.
 Kmod = 1/sqrt(10);
 output = qam16*Kmod;
end

%64-QAM
if mod == 64
 bits = reshape(bits,6,length(bits)/6);
 g = modem.qammod('M',64,'SymbolOrder','user-defined', ...
 'SymbolMapping',[4 5 7 6 2 3 1 0 12 13 15 14 10 11 9 8 28 29 ...
 31 30 26 27 25 24 20 21 23 22 18 19 17 16 52 53 55 54 50 51 49 ...
 48 60 61 63 62 58 59 57 56 44 45 47 46 42 43 41 40 36 37 39 38 ...
 34 35 33 32], 'InputType','bit'); % Create a modulator object
 qam64 = modulate(g,bits); % modulate the signal y.
 Kmod = 1/sqrt(42);
 output = qam64*Kmod;
end

 93

function [output] = Scrambler(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Scrambler.m
%
% this function scrambles the data bits as per page 16 of 802.11a
% generator polynomial: S(x) = x^7 + x^4 + 1
% note: need to determine how to set initial state
%
% Input: %
% input: data bits from MAC layer
%
% Output: %
% output: scrambled bits
%
% Author: Keith Howland
% Created: 20 Apr 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

output=zeros(1,length(input));
%set initial state
reg = [1 0 1 1 1 0 1];
for i = 1:length(input)
 new = xor(reg(4),reg(7));
 %shift bits left one
 reg = [new reg([1 2 3 4 5 6])];
 % modulo 2 add output with data bit
 output(i) = xor(new,input(i));
end

%for testing
%load first144testvector

 94

function [data_bits] = deCode11(bits,code_rate)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deCode11.m
%
% Deconvolutional code the received bits given code rate read from
% SIGNAL field
%
% Input: %
% bits: coded OFDM symbol bits
% code_rate: code rate per SIGNAL field for symbol
% Output: %
% data_bits: data bits for symbol
%
% Author: Keith Howland
% Created: 23 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%======================================%
%set up trellis for decoding
%constraint length 7
%generator polynomicals: 133 & 171
%table length not specified in standard
%=====================================%
trellis = poly2trellis(7,[133 171]);
table_length = 3;

%====================================%
%use viterbi decoding based on code rate
% 2/3 and 3/4 need to be depunctured
%could also implement soft decoding
%====================================%
if code_rate == .5
 data_bits = vitdec(bits,trellis,table_length, 'trunc','hard');
elseif code_rate == .66
 data_bits = vitdec(bits,trellis,table_length, 'trunc','hard',[1 1 1 0]);
elseif code_rate == .75
 data_bits = vitdec(bits,trellis,table_length, 'trunc','hard',[1 1 1 0 0 1]);
end

 95

%for testing
%[n1,r1] = biterr(z(3+1:end),x(1:end-3));

 96

function [output] = deinterleaver11(bits,Ncbps,Nbpsc)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deinterleaver11.m
%
% this function performs data deinterleaving per page 17 of PHY section
% of 802.11a standard. Indicies were calculated using
% interleaverCalculator.m
%
% Input: %
% bits: vector of bits to be interleaved
% Nbpsc: coded bits per subcarrier
% Ncbps: coded bits per OFDM symbol
% Output: %
% data_bits: de-interleaved data bits for symbol
%
% Author: Keith Howland
% Created: 03 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if Ncbps == 48 && Nbpsc ==1
 first =bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, ...
 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42, ...
 43,44,45,46,47,48]);
 output = first([1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,2,5,8, ...
 11,14,17,20,23,26,29,32,35,38,41,44,47,3,6,9,12,15,18,21,24,27, ...
 30,33,36,39,42,45,48]);
elseif Ncbps == 96 && Nbpsc ==2
 first = bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...
 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42, ...
 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, ...
 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84, ...
 85,86,87,88,89,90,91,92,93,94,95,96]);
 output = first([1,7,13,19,25,31,37,43,49,55,61,67,73,79,85,91,2,8,...
 14,20,26,32,38,44,50,56,62,68,74,80,86,92,3,9,15,21,27,33,39,...
 45,51,57,63,69,75,81,87,93,4,10,16,22,28,34,40,46,52,58,64,70,...
 76,82,88,94,5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,6,...
 12,18,24,30,36,42,48,54,60,66,72,78,84,90,96]);
elseif Ncbps == 192 && Nbpsc == 4
 first = bits([1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,18,17,20,19,22,...

 97

 21,24,23,25,26,27,28,29,30,31,32,33,34,35,36,38,37,40,39,42,41,...
 44,43,46,45,48,47,49,50,51,52,53,54,55,56,57,58,59,60,62,61,64,...
 63,66,65,68,67,70,69,72,71,73,74,75,76,77,78,79,80,81,82,83,84,...
 86,85,88,87,90,89,92,91,94,93,96,95,97,98,99,100,101,102,103,...
 104,105,106,107,108,110,109,112,111,114,113,116,115,118,117,120,...
 119,121,122,123,124,125,126,127,128,129,130,131,132,134,133,136,...
 135,138,137,140,139,142,141,144,143,145,146,147,148,149,150,151,...
 152,153,154,155,156,158,157,160,159,162,161,164,163,166,165,168,...
 167,169,170,171,172,173,174,175,176,177,178,179,180,182,181,184,...
 183,186,185,188,187,190,189,192,191]);
 output= first([1,13,25,37,49,61,73,85,97,109,121,133,145,157,169,...
 181,2,14,26,38,50,62,74,86,98,110,122,134,146,158,170,182,3,15,...
 27,39,51,63,75,87,99,111,123,135,147,159,171,183,4,16,28,40,52,...
 64,76,88,100,112,124,136,148,160,172,184,5,17,29,41,53,65,77,89,...
 101,113,125,137,149,161,173,185,6,18,30,42,54,66,78,90,102,114,...
 126,138,150,162,174,186,7,19,31,43,55,67,79,91,103,115,127,139,...
 151,163,175,187,8,20,32,44,56,68,80,92,104,116,128,140,152,164,...
 176,188,9,21,33,45,57,69,81,93,105,117,129,141,153,165,177,189,...
 10,22,34,46,58,70,82,94,106,118,130,142,154,166,178,190,11,23,...
 35,47,59,71,83,95,107,119,131,143,155,167,179,191,12,24,36,48,...
 60,72,84,96,108,120,132,144,156,168,180,192]);
elseif Ncbps == 288 && Nbpsc == 6
 first = bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21,19,20,...
 24,22,23,27,25,26,30,28,29,33,31,32,36,34,35,38,39,37,41,42,40,...
 44,45,43,47,48,46,50,51,49,53,54,52,55,56,57,58,59,60,61,62,63,...
 64,65,66,67,68,69,70,71,72,75,73,74,78,76,77,81,79,80,84,82,83,...
 87,85,86,90,88,89,92,93,91,95,96,94,98,99,97,101,102,100,104,...
 105,103,107,108,106,109,110,111,112,113,114,115,116,117,118,...
 119,120,121,122,123,124,125,126,129,127,128,132,130,131,135,...
 133,134,138,136,137,141,139,140,144,142,143,146,147,145,149,...
 150,148,152,153,151,155,156,154,158,159,157,161,162,160,163,...
 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,...
 179,180,183,181,182,186,184,185,189,187,188,192,190,191,195,...
 193,194,198,196,197,200,201,199,203,204,202,206,207,205,209,...
 210,208,212,213,211,215,216,214,217,218,219,220,221,222,223,...
 224,225,226,227,228,229,230,231,232,233,234,237,235,236,240,...
 238,239,243,241,242,246,244,245,249,247,248,252,250,251,254,...
 255,253,257,258,256,260,261,259,263,264,262,266,267,265,269,...
 270,268,271,272,273,274,275,276,277,278,279,280,281,282,283,...
 284,285,286,287,288]);
 output = first([1,19,37,55,73,91,109,127,145,163,181,199,217,235,...
 253,271,2,20,38,56,74,92,110,128,146,164,182,200,218,236,254,...
 272,3,21,39,57,75,93,111,129,147,165,183,201,219,237,255,273,4,...
 22,40,58,76,94,112,130,148,166,184,202,220,238,256,274,5,23,41,...
 59,77,95,113,131,149,167,185,203,221,239,257,275,6,24,42,60,78,...

 98

 96,114,132,150,168,186,204,222,240,258,276,7,25,43,61,79,97,115,...
 133,151,169,187,205,223,241,259,277,8,26,44,62,80,98,116,134,...
 152,170,188,206,224,242,260,278,9,27,45,63,81,99,117,135,153,...
 171,189,207,225,243,261,279,10,28,46,64,82,100,118,136,154,172,...
 190,208,226,244,262,280,11,29,47,65,83,101,119,137,155,173,191,...
 209,227,245,263,281,12,30,48,66,84,102,120,138,156,174,192,210,...
 228,246,264,282,13,31,49,67,85,103,121,139,157,175,193,211,229,...
 247,265,283,14,32,50,68,86,104,122,140,158,176,194,212,230,248,...
 266,284,15,33,51,69,87,105,123,141,159,177,195,213,231,249,267,...
 285,16,34,52,70,88,106,124,142,160,178,196,214,232,250,268,286,...
 17,35,53,71,89,107,125,143,161,179,197,215,233,251,269,287,18,...
 36,54,72,90,108,126,144,162,180,198,216,234,252,270,288]);
end

 99

function [output,rec_signal,parity_bit,data_rate,data_length,tail] = ...
 demodData11(input, start_of_data,H,sent_data_rate,sent_data_length)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% demodData11.m
%
% Format received bits into OFDM symbols; apply channel estimation;
% read SIGNAL field; read data bits
%
% Input: %
% input: received bits
% start_of_data: index of first bit of CP of SIGNAL symbol
% H: channel frequency response
% sent_data_rate: sent data rate
% sent_data_length: used as a check of proper header decoding
% Output: %
% output: received data bits
% rec_signal: received SIGNAL field
% parity_bit: whether or not parity check passed
% data_rate: received data_rate
% modulation: received modulation
% coding_rate: received coding rate
% Nsym: received number of OFDM data symbols
% data_length: length of received data in bytes
%
% Author: Keith Howland
% Created: 15 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=================================%
%make sure received data is divisible by 80
%if not, append zeros
%=================================%
len = length(input(start_of_data:length(input)));
if rem(len,80) ~= 0 %each block should be 80 = 16+64
 pad = 80 - rem(len,80); %if not append zeros;
else pad =0;
end
y1 = [input(start_of_data:length(input)); zeros(pad,1)];

%================================%

 100

%serial to parallel conversion
%================================%
y2=reshape(y1,80,length(y1)/80); %Reshape data; 64 + 16 = 80;
y3 = y2(17:80,:); %strip off cyclic prefix
Y64=fft(y3,64); %bring in to freq domain
Y1 = Y64([2:7,9:21,23:27,39:43,45:57,59:64],:); %remove pilots and nulls

%===================================%
%plot constellation
%===================================%
% yplot=Y1(:);
% h=scatterplot(yplot(1:48),1,0,'+r'); %plot SIGNAL field; BPSK
% hold on;
% scatterplot(yplot(49:end),1,0,'.b',h);%plot data
% title('Constellation of Received Signal and Data fields');
% legend('Signal','Data');
% hold off

%====================================%
%apply channel estimation correction
%====================================%
H1=H([2:7,9:21,23:27,39:43,45:57,59:64]);
for i = 1:size(Y1,2)
 Y1(:,i) = Y1(:,i)./H1;
end
% ynewplot = Y1(:); %plot corrected channel
% h=scatterplot(ynewplot(1:48),1,0,'+r');
% hold on
% scatterplot(ynewplot(49:end),1,0,'.b',h);
% title('Channel Corrected Constellation');
% legend('Signal','Data');
% hold off

%===================================%
%look at signal field
%===================================%
Y2 = FFTremap11(Y1(:,1));
Y3= signalDemodulate11(Y2,2);%SIGNAL always sent as BPSK
Y4= deinterleaver11(Y3,48,1);
rec_signal= deCode11(Y4,.5)'; %SIGNAL always sent @ 1/2 rate coding
rec_signal= rec_signal + zeros(length(rec_signal),1); %convert to numbers
[data_rate,modulation,Ncbps,Nbpsc,coding_rate,Nsym,data_length, ...
 parity_bit,tail] = ReadSIGNALField(rec_signal);%read contents of SIGNAL
if data_rate ~= sent_data_rate || data_length ~= sent_data_length ...
 || Nsym+1 ~= size(Y1,2) %if corrupted bits, return all zeros

 101

 output =0;
 return %exit out if corrupted signal field
end

%=====================================%
%now read rest of signal at appropriate data rate
%=====================================%
rec_data = Y1(:,2:Nsym+1); %strip off signal symbol
deint_data=zeros(Ncbps,Nsym);
for i = 1: Nsym
 Y2 = FFTremap11(rec_data(:,i));
 Y3= signalDemodulate11(Y2,modulation);
 deint_data(:,i)= deinterleaver11(Y3,Ncbps,Nbpsc);
end
deint_data = deint_data(:); %one stream for decoding and descrambling
decoded_data= deCode11(deint_data,coding_rate);
descrambled_data = descrambler(decoded_data);
output= descrambled_data(17:17+data_length*8-1); %strip off SERVICE field
output = output'; %and tail and pad zeros

 102

function [output] = descrambler(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% descrambler.m
%
% Unscramble received bits after decoding
%
% Input: %
% input: scrambled bits
%
% Output: %
% output: unscrambled bits
%
% Author: Keith Howland
% Created: 29 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

output=zeros(1,length(input));
%set initial state
reg = [1 0 1 1 1 0 1];
for i = 1:length(input)
 new = xor(reg(4),reg(7));
 %shift bits left one
 reg = [new reg([1 2 3 4 5 6])];
 % modulo 2 add output with data bit
 output(i) = xor(new,input(i));
end

 103

function [output] = FFTremap11(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FFTremap.m
%
% Changes bit order for input to FFT
%
% Input: %
% input: input values for FFT
%
% Output: %
% output: input values for FFT in correct order
%
% Author: Keith Howland
% Created: 29 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

output(1:24) = input(25:48);
output(25:48) = input(1:24);

 104

function [data_rate,modulation,Ncbps,Nbpsc,coding_rate,Nsym, ...
 data_length,parity_bit,tail] = ReadSIGNALField(signal)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% ReadSIGNALfield.m
%
% Read the signal fied portion of the PLCP Header to extract: data
% rate, type of modulation, length of following data, code rate, and
% number of symbols per subcarrier and data bits per subcarrier
%
% Input: %
% signal: bits that should be SIGNAL Field from frame synch %
% Output: %
% data rate: data rate at which following data was sent %
% modulation: symbol mapping described by M-ary number 2-BPSK,
% 4-QPSK, 16-QAM, 64-QAM
% Ncbps: number of coded bits per symbol
% Nbpsc: number of coded bits per subcarrier
% coding_rate: data bits/ coded bits
% Nsym: number of OFDM symbols to follow
% data_length: length of data to follow in bytes
% tai: sum of six tail bits: should be zero
%
% Author: Keith Howland
% Created: 20 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=======================================%
%read out data length from signal field
%=======================================%
data_length = bin2dec(num2str(flipud(signal(6:17))'));

%=======================================%
%read tail
%======================================%
tail = signal(19:24);%should be six zeros
tail = sum(tail);%should be zero

%===================================%
% parity calculation of SIGNAL Field
%===================================%
rec_parity_bit = signal(18);

 105

sent_parity_bit = rem(sum(signal(1:17)),2);
if rec_parity_bit == sent_parity_bit
 parity_bit = 1;
else
 parity_bit = 0;
end

%=================================%
%Read data rate bits and compare against know codes
%then extract other information
%if no match for rate, set all other fields to zero
%=================================%
rate = signal(1:4); %get data rate bits
if rate == [1;1;0;1]
 data_rate =6; %Mbps for data to follow
 Nbpsc =1; %Number of coded bits per sub carrier
 Ndbps = 24; %Number of data bits per sub carrier
 Ncbps =48; %Number of coded bits per OFDM symbol
 modulation = 2; % 2=BPSK; 4=QPSK; 16=16_QAM 64=64_QAM
 coding_rate = .5; %convolution encoding rate
elseif rate == [1;1;1;1]
 data_rate = 9;
 Nbpsc =1;
 Ndbps = 36;
 Ncbps =48;
 modulation = 2;
 coding_rate = .75;
elseif rate == [0;1;0;1]
 data_rate = 12;
 Nbpsc =2;
 Ndbps = 48;
 Ncbps =96;
 modulation = 4;
 coding_rate = .5;
elseif rate == [0;1;1;1]
 data_rate = 18;
 Nbpsc =2;
 Ndbps = 72;
 Ncbps =96;
 modulation = 4;
 coding_rate = .75;
elseif rate == [1;0;0;1]
 data_rate = 24;
 Nbpsc =4;
 Ndbps = 96;

 106

 Ncbps =192;
 modulation = 16;
 coding_rate = .5;
elseif rate == [1;0;1;1]
 data_rate = 36;
 Nbpsc =4;
 Ndbps = 144;
 Ncbps =192;
 modulation = 16;
 coding_rate = .75;
elseif rate == [0;0;0;1]
 data_rate = 48;
 Nbpsc =6;
 Ndbps = 192;
 Ncbps =288;
 modulation = 64;
 coding_rate = .66;
elseif rate == [0;0;1;1]
 data_rate = 54;
 Nbpsc =6;
 Ndbps = 216;
 Ncbps =288;
 modulation = 64;
 coding_rate = .75;
else
 %use data rate = 0 as sign of data rate error
 data_rate=0;modulation=0;Ncbps=0;Nbpsc=0;coding_rate=0;Nsym=0;
 return
end
%=====================================%
%calculate number of OFDM symbols
%=====================================%
Nsym = ceil((16+8*data_length+6)/Ndbps);

%end function

 107

function [output] = signalDemodulate11(input,mod)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% signalDemodulate11.m
%
% Map complex valued symbols back to coded bits
%
% Input: %
% sent_data_rate: complex valued symbols
% mod: M-ary number of modulation
% Output: %
% output: coded bits
%
% Author: Keith Howland
% Created: 29 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%BPSK
if mod ==2
 output = input > 0;
%QPSK
elseif mod ==4
 % Create a demodulator object
 g = modem.qamdemod('M',4,'SymbolOrder','user-defined',...
 'SymbolMapping',[1 0 3 2],'OutputType','bit');
 % Demodulate the signal
 output1 = demodulate(g,sqrt(2)*input);
 output = output1(:);
%16-QAM
elseif mod ==16
 g = modem.qamdemod('M',16, 'SymbolOrder','user-defined',...
 'SymbolMapping',[2 3 1 0 6 7 5 4 14 15 13 12 10 11 9 8],...
 'OutputType','bit');
 output1 = demodulate(g,sqrt(10)*input);
 output = output1(:);
%64-QAM
elseif mod ==64
 g = modem.qamdemod('M',64,'SymbolOrder','user-defined',...
 'SymbolMapping',[4 5 7 6 2 3 1 0 12 13 15 14 10 11 9 8 28 29 31 ...
 30 26 27 25 24 20 21 23 22 18 19 17 16 52 53 55 54 50 51 49 48 ...
 60 61 63 62 58 59 57 56 44 45 47 46 42 43 41 40 36 37 39 38 34 ...
 35 33 32], 'OutputType','bit'); % Create a demodulator object

 108

 output1 = demodulate(g,sqrt(42)*input); % Demodulate the signal y.
 output = output1(:);
end

 109

function [signal_detected,start_of_data,H] = synch11(input,Th)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% synch11.m
%
% Perform frame synchronization; estimate channel
%
% Input: %
% input: received bits from channel
% Th: decision threshold
% Output: %
% signal_detected: was the signal detected: 1 - Yes;0 - No;
% start_of_data: sample index of start of SIGNAL field
% H: channel frequency response
%
% Author: Keith Howland
% Created: 15 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=================================%
%load in preambles for cross-correlation
%=================================%
load Receiver/short_time %time domain of one short preamble symbol
load Receiver/flip_conj_short_preamble %flipped and complex conjugated
xsp = short_time(1:16);
load Receiver/long_time %one symbol of long preamble in time domain
load Receiver/flip_conj_long_preamble %above flipped and complex conjugated

%=================================%
%take input and place into blocks of L; L=16 for short preamble
%perform cross-correlation
%look for correlation values above threshold
%=================================%
L=16;n=1;short_ind=zeros(1,10);AGC=0;
short_corr = zeros(1,length(input));
for i = 1: length(input)-2*L; %L=sample length that is repeated
 b1 = input(i:i+L-1); %sliding window
 P = xsp' * b1; %cross correlation with stored preamble
 Ps = P' * P; %get magnitude
 R2 = (xsp' * xsp); %power of stored preamble for normalization
 Rs = R2 * R2; %square term so proportional to Ps

 110

 short_corr(i) = Ps / Rs; %normalize with respect to preamble power
 %Apply Automatic Gain Control to faded signals: see below
% if AGC == 1
% short_corr(i) = short_corr(i) * pow_correction;
% end
 %find peaks above threshold
 if short_corr(i) > Th && n == 1;
 short_ind(n) = i;
 n = n+1;
 elseif short_corr(i) > Th && n < 11 && short_ind(n-1)+ 16 == i
 short_ind(n) = i;
 n = n+1;
% if n == 5
% %Automatic Gain Control: Boost faded signals
% r_pow =(input(i-64:i)' * input(i-64:i))/64;
% p_pow =(short_time' * short_time)/64;
% if p_pow > r_pow
% AGC=1;
% pow_correction = (p_pow/r_pow);
% end
% end
 end
end

%figure;plot(short_corr(400:700)); %plot cross-correlation
%=================================%
%16 samples after last peak starts the long preamble
%=================================%
if n == 11
 start_of_data = short_ind(10) + 16 +160;
 signal_detected=1;
else
 signal_detected=0;H=0;start_of_data=0;
 return
end

%=================================%
%Estimate Channel
%=================================%
% L=16; %length of channel set by standard to 16
LP=input(start_of_data -160:start_of_data-1);
LP1=LP(33:96); %1st Long Preamble
LP2=LP(97:160); %2nd Long Preabmle
% % y(n) = h(n)*xlp(n) + noise;
% % y= Xh + noise in vector notation

 111

% c = long_time;r = [long_time(1);long_time(64:-1:64-L+2)]; %column wins
% X = toeplitz(c,r);
% h1 = X\LP1;
% h2 = X\LP2;
% h=0.5*(h1+h2); %channel impulse response
% figure;plot(h .* conj(h));
% H=fft(h,64); %Frequency response of channel
%
% %=================================%
% %plot channel impulse response
% %=================================%
%
% Y1 = fft(LP1);
% Y2 = fft(LP2);
% X = fft(long_time);
% a = find(round(abs(X))==1);
% X1 = X(a);
% H = (Y1(a)+Y2(a))./(2*X1);
% h1 =ifft(H);
% figure;plot(h1 .* conj(h1));
% % a=1;

xLP=long_time; % Long Preamble
L=16; % choose L>16 to account for uncertainty in the estimated beginning of the
preamble
X=toeplitz(xLP, [xLP(1); xLP(64:-1:64-L+2)]);
Xinv=inv(X'*X)*X';
h1=Xinv*LP1;
h2=Xinv*LP2;
h=0.5*(h1+h2);
H=fft(h,64);
%figure;plot(abs(H));xlabel('Frequency');ylabel('Magnitude')

 112

function [output,cols] = checkBlockSize(input,mod_number)
%check to make sure data fits in uncoded block size
%then find how many blocks of data (cols)

len = length(input); %get input length

if mod_number == 0
 if mod(len,88) ~= 0 %if input doesn't fit block size -8 for pad bit at end
 input = [input; ones(88 - mod(len,88),1)]; %add ones to end; see 8.3.3.1
 end
 cols = ceil(length(input)/88); %get number of blocks
 output = reshape(input,88,cols); %put into matrix for processing
elseif mod_number == 1
 if len ~= 184
 input = [input; ones(184 - mod(len,184),1)];
 end
 cols = length(input)/184;
 output = reshape(input,184,cols);
elseif mod_number == 2
 if len ~= 280
 input = [input; ones(280 - mod(len,280),1)];
 end
 cols = length(input)/280;
 output = reshape(input,280,cols);
elseif mod_number == 3
 if len ~= 376
 input = [input; ones(376 - mod(len,376),1)];
 end
 cols = length(input)/376;
 output = reshape(input,376,cols);
elseif mod_number == 4
 if len ~= 568
 input = [input; ones(568 - mod(len,568),1)];
 end
 cols = length(input)/568;
 output = reshape(input,568,cols);
elseif mod_number == 5
 if len ~= 760
 input = [input; ones(760 - mod(len,760),1)];
 end
 cols = length(input)/760;
 output = reshape(input,760,cols);
elseif mod_number == 6
 if len ~= 856
 input = [input; ones(856 - mod(len,856),1)];

 113

 end
 cols = length(input)/856;
 output = reshape(input,856,cols);
end

 114

function [output] = ConvolutionCoding16(input,mod_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% ConvoultionCoding16.m
%
% Perform binary convolution encoding on RSecoding output; data is
% punctured based on modulation rate;gen polys are reverse of 802.11a
% constraint length is 7
%
% Input: %
% input: Reed-Solomon encoded bits
% mod_number: modulation code number
% Output: %
% output: binary convolutionally encoded data
%
% Author: Keith Howland
% Created: 20 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%rate 1/2 coder
trellis = poly2trellis(7,[171 133]); %G1 = 171; G2=133

%now encode and puncture
if mod_number == 0 %rate 1/2 no puncture
 output = convenc(input,trellis);
elseif mod_number ==1 || mod_number ==3 %puncture code for 2/3
 output = convenc(input,trellis,[1 1 0 1]);
elseif mod_number == 5 %puncture code for 3/4
 output = convenc(input,trellis,[1 1 0 1 1 0]);
elseif mod_number ==2 || mod_number ==4 || mod_number ==6 %puncture code for 5/6
 output = convenc(input,trellis,[1 1 0 1 1 0 0 1 1 0]);
end

 115

function [signal,fch_bits,data] = ...
 createDownLinkFrame(mod_number, sent_data_length)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% createDownLinkFrame.m
%
% this function creates the frames from a Base Station
% in the first burst using the long preamble and creating the appropriate
% FCH symbol which holds the rate ID for use in decoding
% CP needs to be made variable
%
% Input: %
% mod_number: modulation for transmission
% sent_data_length: number of bytes in MAC layer data
%
% Output: %
% signal: time domain sampled signal
% fch_bits: PLCP header bits
% data: MAC layer data
%
% Calls:
% CheckBlockSize.m: make sure right number of input bits for symbols
% FCH.m: create header
% Randomizer.m: randomize data
% RScoding.m: Reed-Solomon encoding
% ConvolutionCoding16.m: binary convoluion encoding
% interleaver16.m: interleave data
% modData16.m: to map bits into symbols: BPSK,QPSK,etc.
% createSymbol16.m: make 256 length OFDM symbol with pilots and nulls
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Long Preamble first
load long_preamble.mat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %FCH: encoded at BPSK 1/2 convolution coding only
[fch,fch_bits] = FCH(mod_number,1,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 116

% DL Bursts: assume only one burst
%for now just random binary
data=randint(sent_data_length,1);
[data, cols] = checkBlockSize(data,mod_number);
% cols % how many cols to screen; can be slow; see progress
%%%

extended_symbol =zeros(320,cols); %reserve space for output

%%
%make the symbols
for i = 1:cols
 %i %see progress for long input
 random_data=Randomizer(data(:,i),2);
 rs_data=RScoding(random_data,mod_number);
 cc_data=ConvolutionCoding16(rs_data,mod_number);
 interleaved_data=interleaver16(cc_data,mod_number);
 modulated_data = modData16(interleaved_data,mod_number);
 symbol = createSymbol16(modulated_data);
 time_symbol = ifft(symbol,256);
 extended_symbol(:,i) = [time_symbol(193:256) time_symbol]; % add CP
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%add preamble and FCH symbol to data
signal = [long_preamble; fch; extended_symbol(:)];

 117

function [symbol] = createPilots16(symbol,index)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% createPilots16.m
%
% %this function creates index for pilot modulation for downlink only
%
% Input: %
% symbol: OFDM symbol without pilots
% index: sample index for pilot
%
% Output: %
% symbol: OFDM symbol with pilots
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global reg %need to retain value through different calls

if index ==0
 %UL initialization
 reg = [1 0 1 0 1 0 1 0 1 0 1];
 %DL initialization
 %reg = [1 1 1 1 1 1 1 1 1 1 1];
end
%w = reg(11); works here for downlink
new = xor(reg(9),reg(11));
%shift bits left one
reg = [new reg(1:10)];
w = reg(11);
w_opp = w==0; %create opposite term

%add pilots for UL
symbol([13 63 113 138 163 188]) = 1-2*w;
symbol([38 88]) = 1 -2*w_opp;

 118

function [long_preamble] = createPreamble16()
%need to add cyclic prefix variable

%create index for preamble frequency domain sequence
PALL(1,:) = -100:100;
PALL(2,:) = [1 - 1i,1 - 1i,-1 - 1i,1 + 1i,1 - 1i,1 - 1i,-1 + 1i,1 - 1i,1 - 1i,1 - 1i,1 + 1i,-1 -
1i,1 + 1i,1 + 1i,-1 - 1i,1 + 1i,-1 - 1i,-1 - 1i,1 - 1i,-1 + 1i,1 - 1i,1 - 1i,-1 - 1i,1 + 1i,1 - 1i,1 -
1i,-1 + 1i,1 - 1i,1 - 1i,1 - 1i,1 + 1i,-1 - 1i,1 + 1i,1 + 1i,-1 - 1i,1 + 1i,-1 - 1i,-1 - 1i,1 - 1i,-1
+ 1i,1 - 1i,1 - 1i,-1 - 1i,1 + 1i,1 - 1i,1 - 1i,-1 + 1i,1 - 1i,1 - 1i,1 - 1i,1 + 1i,-1 - 1i,1 + 1i,1 +
1i,-1 - 1i,1 + 1i,-1 - 1i,-1 - 1i,1 - 1i,-1 + 1i,1 + 1i,1 + 1i,1 - 1i,-1 + 1i,1 + 1i,1 + 1i,-1 - 1i,1
+ 1i,1 + 1i,1 + 1i,-1 + 1i,1 - 1i,-1 + 1i,-1 + 1i,1 - 1i,-1 + 1i,1 - 1i,1 - 1i,1 + 1i,-1 - 1i,-1 -
1i,-1 - 1i,-1 + 1i,1 - 1i,-1 - 1i,-1 - 1i,1 + 1i,-1 - 1i,-1 - 1i,-1 - 1i,1 - 1i,-1 + 1i,1 - 1i,1 - 1i,-1
+ 1i,1 - 1i,-1 + 1i,-1 + 1i,-1 - 1i,1 + 1i,0 + 0i,-1 - 1i,1 + 1i,-1 + 1i,-1 + 1i,-1 - 1i,1 + 1i,1 +
1i,1 + 1i,-1 - 1i,1 + 1i,1 - 1i,1 - 1i,1 - 1i,-1 + 1i,-1 + 1i,-1 + 1i,-1 + 1i,1 - 1i,-1 - 1i,-1 - 1i,-
1 + 1i,1 - 1i,1 + 1i,1 + 1i,-1 + 1i,1 - 1i,1 - 1i,1 - 1i,-1 + 1i,1 - 1i,-1 - 1i,-1 - 1i,-1 - 1i,1 +
1i,1 + 1i,1 + 1i,1 + 1i,-1 - 1i,-1 + 1i,-1 + 1i,1 + 1i,-1 - 1i,1 - 1i,1 - 1i,1 + 1i,-1 - 1i,-1 - 1i,-
1 - 1i,1 + 1i,-1 - 1i,-1 + 1i,-1 + 1i,-1 + 1i,1 - 1i,1 - 1i,1 - 1i,1 - 1i,-1 + 1i,1 + 1i,1 + 1i,-1 -
1i,1 + 1i,-1 + 1i,-1 + 1i,-1 - 1i,1 + 1i,1 + 1i,1 + 1i,-1 - 1i,1 + 1i,1 - 1i,1 - 1i,1 - 1i,-1 + 1i,-
1 + 1i,-1 + 1i,-1 + 1i,1 - 1i,-1 - 1i,-1 - 1i,1 - 1i,-1 + 1i,-1 - 1i,-1 - 1i,1 - 1i,-1 + 1i,-1 + 1i,-1
+ 1i,1 - 1i,-1 + 1i,1 + 1i,1 + 1i,1 + 1i,-1 - 1i,-1 - 1i,-1 - 1i,-1 - 1i,1 + 1i,1 - 1i,1 - 1i];

%make first preamble symbol
b=mod(-100:100,4); %remember based off -100:100
c=find(b);
DL_preamble_1=PALL;
DL_preamble_1(2,c)=0; %only mod(k,4) =0 have value
DL_preamble_1 = conj(DL_preamble_1(2,:)).';
DL_preamble_1 = 2 * DL_preamble_1;
preamble_DL_1 = ifft(DL_preamble_1,256);
preamble_DL_1_CP = [preamble_DL_1(193:end) preamble_DL_1]; %add cyclic prefix

%make second preamble symbol for DL
%this is also the preamble for UL known as short preamble
d=mod(-100:100,2); %remember based off -100:100
f=find(d);
DL_preamble_2=PALL;
DL_preamble_2(2,f)=0;
symbol_2=sqrt(2)*DL_preamble_2(2,:);

preamble_DL_2 = ifft(symbol_2,256);
preamble_DL_2_CP = [preamble_DL_2(193:end) preamble_DL_2]; %add cyclic
prefix

long_preamble = [preamble_DL_1_CP preamble_DL_2_CP];

 119

function [OFDM_symbol] = createSymbol16(modulated_data)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% createSymbol16.m
%
% %this function creates index for pilot modulation for downlink only
%
% Input: %
% modulated_data: input data for OFDM symbol
%
% Output: %
% OFDM_symbol: OFDM symbol with pilots and nulls
%
% Calls:
% createPilots16.m: to add piltos
% IFFTmap16.m: to arrane order of samples for FFT
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create frame of symbols
symbol(1,:) = [-100:-1 1:100];
symbol(2,:) = zeros(1,200); %start with all nulls

%add data when using all 16 subcarriers
symbol(2,([1:12,14:37,39:62,64:87,89:112,114:137,139:162,164:187,189:200]))=modula
ted_data;

%insert pilots
%simulate creating preamble for testing
for i = 0:1
 w = createPilots16(symbol(2,:),i);
end
symbol = createPilots16(symbol(2,:),2); %dummy parameter right now

OFDM_symbol = IFFTmap16(symbol);

 120

function [output,fch_bits] = FCH(mod_number,preamble,DIUC)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FCH.m
%
% create the PLCP header and encode at 1/2 rate with BPSK modulation
%
% Input: %
% mod_number: modulation for transmission
% preamble: preamble sample values
% DIUC: information regarding frame
%
% Output: %
% output: OFDM header symbol
% fch_bits: PLCP header bits
%
% Calls:
% Randomizer.m: randomize data
% RScoding.m: Reed-Solomon encoding
% ConvolutionCoding16.m: binary convoluion encoding
% interleaver16.m: interleave data
% modData16.m: to map bits into symbols: BPSK,QPSK,etc.
% createSymbol16.m: make 256 length OFDM symbol with pilots and nulls
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%convert mod_number to binary
if mod_number == 0
 mod_number = [0 0 0 0];
elseif mod_number ==1
 mod_number = [0 0 0 1];
elseif mod_number == 2
 mod_number = [0 0 1 0];
elseif mod_number == 3
 mod_number = [0 0 1 1];
elseif mod_number == 4
 mod_number = [0 1 0 0];
elseif mod_number == 5
 mod_number = [0 1 0 1];

 121

elseif mod_number == 6
 mod_number = [0 1 1 0];
end

base_ID = [0 0 0 1]; %base station ID
frame_number = [0 0 0 1]; % see Table 358 of standard
config_cc = [0 0 0 1]; %see 6.3.2.3.1
reserve = [0 0 0 0]; %reserved bits
bits=[];
for i = 0:3
 if i == 0
 Rate_DIUC = mod_number; %0=BPSK,.5; 1=QPSK,.5; 2=QPSK,.75; etc.
 else
 Rate_DIUC = [0 0 0 1];
 end
 if DIUC ~=0
 if preamble ==1
 pre = 1;
 else
 pre=0;
 end
 len = [zeros(1,10) 1]; % #of OFDM symbols in burst
 DIUC = [pre len];
 else
 start_time = [zeros(1,11) 1];
 DIUC = start_time;
 end
 bits = [bits Rate_DIUC DIUC];
end

fch_bits_no_HCS = [base_ID frame_number config_cc reserve bits];

hcs = HCS(fch_bits_no_HCS);
fch_bits = [fch_bits_no_HCS hcs];

%create PLCP Header
rand_fch = Randomizer(fch_bits,2); %randomize; burst 2 for UL initial.
cc_fch = ConvolutionCoding16(rand_fch,0); %1/2 rate convolution coding
int_fch = interleaver16(cc_fch,0); %interleaving
mod_fch = modData16(int_fch,0); %BPSK modulation
fch_sym = createSymbol16(mod_fch); %add pilots and nulls
time_fch = ifft(fch_sym,256).'; %bring into time domain
output = [time_fch(193:256); time_fch]; %add cyclic prefix; fixed at 64 right now

 122

function [reg] = HCS(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% HCS.m
%
% cyclic redundancy check for header bits
% g(D) = D^8 + D^2 + D + 1
%
% Input: %
% inputs: header bits
%
% Output: %
% reg: CRC bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

reg = zeros(1,8); %set initial state
for i = 1:length(input)
 reg8 = xor(reg(1),input(i)); %my reg8 = x(0); in other words reversed
 reg7 = xor(reg(8),reg8);
 reg6 = xor(reg(7),reg8);
 %shift bits left one
 reg = [reg(2:6) reg6 reg7 reg8];
end

 123

function [IFFT_symbol] = IFFTmap16(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% IFFTmap16.m
%
% change order of input for IFFT; put zeros in middle;
%
% Input: %
% inputs: samples
%
% Output: %
% IFFT_symbol: order samples
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

IFFT_symbol(1) = 0;
IFFT_symbol(2:101) = input(101:200);
IFFT_symbol(102:156)= zeros(1,55);
IFFT_symbol(157:256)= input(1:100);

 124

function [output] = interleaver16(bits,mod_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% interleaver16.m
%
% interleave bits based on modulation type; per page 17 of PHY section of
% 802.11a standard for 16 subchannels
%
% Input: %
% bits: bits for interleaving
% mod_number: modulation type
%
% Output: %
% output: interleaved bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if mod_number == 0
 first =bits([1,13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,...
 2,14,26,38,50,62,74,86,98,110,122,134,146,158,170,182,3,15,27,...
 39,51,63,75,87,99,111,123,135,147,159,171,183,4,16,28,40,52,64,...
 76,88,100,112,124,136,148,160,172,184,5,17,29,41,53,65,77,89,...
 101,113,125,137,149,161,173,185,6,18,30,42,54,66,78,90,102,114,...
 126,138,150,162,174,186,7,19,31,43,55,67,79,91,103,115,127,139,...
 151,163,175,187,8,20,32,44,56,68,80,92,104,116,128,140,152,164,...
 176,188,9,21,33,45,57,69,81,93,105,117,129,141,153,165,177,189,...
 10,22,34,46,58,70,82,94,106,118,130,142,154,166,178,190,11,23,...
 35,47,59,71,83,95,107,119,131,143,155,167,179,191,12,24,36,48,...
 60,72,84,96,108,120,132,144,156,168,180,192]);
 output = first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,...
 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,...
 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,...
 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,...
 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,...
 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,...
 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,...
 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,...

 125

 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,...
 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192]);
elseif mod_number == 1 || mod_number == 2
 first = bits([1,13,25,37,49,61,73,85,97,109,121,133,145,157,169,...
 181,193,205,217,229,241,253,265,277,289,301,313,325,337,349,...
 361,373,2,14,26,38,50,62,74,86,98,110,122,134,146,158,170,182,...
 194,206,218,230,242,254,266,278,290,302,314,326,338,350,362,...
 374,3,15,27,39,51,63,75,87,99,111,123,135,147,159,171,183,195,...
 207,219,231,243,255,267,279,291,303,315,327,339,351,363,375,4,...
 16,28,40,52,64,76,88,100,112,124,136,148,160,172,184,196,208,...
 220,232,244,256,268,280,292,304,316,328,340,352,364,376,5,17,...
 29,41,53,65,77,89,101,113,125,137,149,161,173,185,197,209,221,...
 233,245,257,269,281,293,305,317,329,341,353,365,377,6,18,30,42,...
 54,66,78,90,102,114,126,138,150,162,174,186,198,210,222,234,...
 246,258,270,282,294,306,318,330,342,354,366,378,7,19,31,43,55,...
 67,79,91,103,115,127,139,151,163,175,187,199,211,223,235,247,...
 259,271,283,295,307,319,331,343,355,367,379,8,20,32,44,56,68,...
 80,92,104,116,128,140,152,164,176,188,200,212,224,236,248,260,...
 272,284,296,308,320,332,344,356,368,380,9,21,33,45,57,69,81,93,...
 105,117,129,141,153,165,177,189,201,213,225,237,249,261,273,...
 285,297,309,321,333,345,357,369,381,10,22,34,46,58,70,82,94,...
 106,118,130,142,154,166,178,190,202,214,226,238,250,262,274,...
 286,298,310,322,334,346,358,370,382,11,23,35,47,59,71,83,95,...
 107,119,131,143,155,167,179,191,203,215,227,239,251,263,275,...
 287,299,311,323,335,347,359,371,383,12,24,36,48,60,72,84,96,...
 108,120,132,144,156,168,180,192,204,216,228,240,252,264,276,...
 288,300,312,324,336,348,360,372,384]);
 output = first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,...
 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,...
 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,...
 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,...
 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,...
 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,...
 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,...
 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,...
 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,...
 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,...
 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,...
 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,...
 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,...
 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,...
 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,...
 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,...
 283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,...

 126

 298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,...
 313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,...
 328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,...
 343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,...
 358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,...
 373,374,375,376,377,378,379,380,381,382,383,384]);
elseif mod_number ==3 || mod_number ==4
 first = bits([1,13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,...
 193,205,217,229,241,253,265,277,289,301,313,325,337,349,361,373,...
 385,397,409,421,433,445,457,469,481,493,505,517,529,541,553,565,...
 577,589,601,613,625,637,649,661,673,685,697,709,721,733,745,757,...
 2,14,26,38,50,62,74,86,98,110,122,134,146,158,170,182,194,206,...
 218,230,242,254,266,278,290,302,314,326,338,350,362,374,386,...
 398,410,422,434,446,458,470,482,494,506,518,530,542,554,566,578,...
 590,602,614,626,638,650,662,674,686,698,710,722,734,746,758,3,...
 15,27,39,51,63,75,87,99,111,123,135,147,159,171,183,195,207,219,...
 231,243,255,267,279,291,303,315,327,339,351,363,375,387,399,411,...
 423,435,447,459,471,483,495,507,519,531,543,555,567,579,591,603,...
 615,627,639,651,663,675,687,699,711,723,735,747,759,4,16,28,40,...
 52,64,76,88,100,112,124,136,148,160,172,184,196,208,220,232,244,...
 256,268,280,292,304,316,328,340,352,364,376,388,400,412,424,436,...
 448,460,472,484,496,508,520,532,544,556,568,580,592,604,616,628,...
 640,652,664,676,688,700,712,724,736,748,760,5,17,29,41,53,65,77,...
 89,101,113,125,137,149,161,173,185,197,209,221,233,245,257,269,...
 281,293,305,317,329,341,353,365,377,389,401,413,425,437,449,461,...
 473,485,497,509,521,533,545,557,569,581,593,605,617,629,641,653,...
 665,677,689,701,713,725,737,749,761,6,18,30,42,54,66,78,90,102,...
 114,126,138,150,162,174,186,198,210,222,234,246,258,270,282,294,...
 306,318,330,342,354,366,378,390,402,414,426,438,450,462,474,486,...
 498,510,522,534,546,558,570,582,594,606,618,630,642,654,666,678,...
 690,702,714,726,738,750,762,7,19,31,43,55,67,79,91,103,115,127,...
 139,151,163,175,187,199,211,223,235,247,259,271,283,295,307,319,...
 331,343,355,367,379,391,403,415,427,439,451,463,475,487,499,511,...
 523,535,547,559,571,583,595,607,619,631,643,655,667,679,691,703,...
 715,727,739,751,763,8,20,32,44,56,68,80,92,104,116,128,140,152,...
 164,176,188,200,212,224,236,248,260,272,284,296,308,320,332,344,...
 356,368,380,392,404,416,428,440,452,464,476,488,500,512,524,536,...
 548,560,572,584,596,608,620,632,644,656,668,680,692,704,716,728,...
 740,752,764,9,21,33,45,57,69,81,93,105,117,129,141,153,165,177,...
 189,201,213,225,237,249,261,273,285,297,309,321,333,345,357,369,...
 381,393,405,417,429,441,453,465,477,489,501,513,525,537,549,561,...
 573,585,597,609,621,633,645,657,669,681,693,705,717,729,741,753,...
 765,10,22,34,46,58,70,82,94,106,118,130,142,154,166,178,190,202,...
 214,226,238,250,262,274,286,298,310,322,334,346,358,370,382,394,...
 406,418,430,442,454,466,478,490,502,514,526,538,550,562,574,586,...

 127

 598,610,622,634,646,658,670,682,694,706,718,730,742,754,766,11,...
 23,35,47,59,71,83,95,107,119,131,143,155,167,179,191,203,215,...
 227,239,251,263,275,287,299,311,323,335,347,359,371,383,395,407,...
 419,431,443,455,467,479,491,503,515,527,539,551,563,575,587,599,...
 611,623,635,647,659,671,683,695,707,719,731,743,755,767,12,24,...
 36,48,60,72,84,96,108,120,132,144,156,168,180,192,204,216,228,...
 240,252,264,276,288,300,312,324,336,348,360,372,384,396,408,420,...
 432,444,456,468,480,492,504,516,528,540,552,564,576,588,600,612,...
 624,636,648,660,672,684,696,708,720,732,744,756,768]);
 output= first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,...
 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,...
 63,64,66,65,68,67,70,69,72,71,74,73,76,75,78,77,80,79,82,81,84,...
 83,86,85,88,87,90,89,92,91,94,93,96,95,98,97,100,99,102,101,104,...
 103,106,105,108,107,110,109,112,111,114,113,116,115,118,117,120,...
 119,122,121,124,123,126,125,128,127,129,130,131,132,133,134,135,...
 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,...
 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,...
 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,...
 184,185,186,187,188,189,190,191,192,194,193,196,195,198,197,200,...
 199,202,201,204,203,206,205,208,207,210,209,212,211,214,213,216,...
 215,218,217,220,219,222,221,224,223,226,225,228,227,230,229,232,...
 231,234,233,236,235,238,237,240,239,242,241,244,243,246,245,248,...
 247,250,249,252,251,254,253,256,255,257,258,259,260,261,262,263,...
 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,...
 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,...
 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,...
 312,313,314,315,316,317,318,319,320,322,321,324,323,326,325,328,...
 327,330,329,332,331,334,333,336,335,338,337,340,339,342,341,344,...
 343,346,345,348,347,350,349,352,351,354,353,356,355,358,357,360,...
 359,362,361,364,363,366,365,368,367,370,369,372,371,374,373,376,...
 375,378,377,380,379,382,381,384,383,385,386,387,388,389,390,391,...
 392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,...
 408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,...
 424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,...
 440,441,442,443,444,445,446,447,448,450,449,452,451,454,453,456,...
 455,458,457,460,459,462,461,464,463,466,465,468,467,470,469,472,...
 471,474,473,476,475,478,477,480,479,482,481,484,483,486,485,488,...
 487,490,489,492,491,494,493,496,495,498,497,500,499,502,501,504,...
 503,506,505,508,507,510,509,512,511,513,514,515,516,517,518,519,...
 520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,...
 536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,...
 552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,...
 568,569,570,571,572,573,574,575,576,578,577,580,579,582,581,584,...
 583,586,585,588,587,590,589,592,591,594,593,596,595,598,597,600,...

 128

 599,602,601,604,603,606,605,608,607,610,609,612,611,614,613,616,...
 615,618,617,620,619,622,621,624,623,626,625,628,627,630,629,632,...
 631,634,633,636,635,638,637,640,639,641,642,643,644,645,646,647,...
 648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,...
 664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,...
 680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,...
 696,697,698,699,700,701,702,703,704,706,705,708,707,710,709,712,...
 711,714,713,716,715,718,717,720,719,722,721,724,723,726,725,728,...
 727,730,729,732,731,734,733,736,735,738,737,740,739,742,741,744,...
 743,746,745,748,747,750,749,752,751,754,753,756,755,758,757,760,...
 759,762,761,764,763,766,765,768,767]);
elseif mod_number == 5 || mod_number ==6
 first = bits([1,13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,...
 193,205,217,229,241,253,265,277,289,301,313,325,337,349,361,373,...
 385,397,409,421,433,445,457,469,481,493,505,517,529,541,553,565,...
 577,589,601,613,625,637,649,661,673,685,697,709,721,733,745,757,...
 769,781,793,805,817,829,841,853,865,877,889,901,913,925,937,949,...
 961,973,985,997,1009,1021,1033,1045,1057,1069,1081,1093,1105,...
 1117,1129,1141,2,14,26,38,50,62,74,86,98,110,122,134,146,158,...
 170,182,194,206,218,230,242,254,266,278,290,302,314,326,338,350,...
 362,374,386,398,410,422,434,446,458,470,482,494,506,518,530,542,...
 554,566,578,590,602,614,626,638,650,662,674,686,698,710,722,734,...
 746,758,770,782,794,806,818,830,842,854,866,878,890,902,914,926,...
 938,950,962,974,986,998,1010,1022,1034,1046,1058,1070,1082,1094,...
 1106,1118,1130,1142,3,15,27,39,51,63,75,87,99,111,123,135,147,...
 159,171,183,195,207,219,231,243,255,267,279,291,303,315,327,339,...
 351,363,375,387,399,411,423,435,447,459,471,483,495,507,519,531,...
 543,555,567,579,591,603,615,627,639,651,663,675,687,699,711,723,...
 735,747,759,771,783,795,807,819,831,843,855,867,879,891,903,915,...
 927,939,951,963,975,987,999,1011,1023,1035,1047,1059,1071,1083,...
 1095,1107,1119,1131,1143,4,16,28,40,52,64,76,88,100,112,124,136,...
 148,160,172,184,196,208,220,232,244,256,268,280,292,304,316,328,...
 340,352,364,376,388,400,412,424,436,448,460,472,484,496,508,520,...
 532,544,556,568,580,592,604,616,628,640,652,664,676,688,700,712,...
 724,736,748,760,772,784,796,808,820,832,844,856,868,880,892,904,...
 916,928,940,952,964,976,988,1000,1012,1024,1036,1048,1060,1072,...
 1084,1096,1108,1120,1132,1144,5,17,29,41,53,65,77,89,101,113,...
 125,137,149,161,173,185,197,209,221,233,245,257,269,281,293,305,...
 317,329,341,353,365,377,389,401,413,425,437,449,461,473,485,497,...
 509,521,533,545,557,569,581,593,605,617,629,641,653,665,677,689,...
 701,713,725,737,749,761,773,785,797,809,821,833,845,857,869,881,...
 893,905,917,929,941,953,965,977,989,1001,1013,1025,1037,1049,...
 1061,1073,1085,1097,1109,1121,1133,1145,6,18,30,42,54,66,78,90,...
 102,114,126,138,150,162,174,186,198,210,222,234,246,258,270,282,...
 294,306,318,330,342,354,366,378,390,402,414,426,438,450,462,474,...

 129

 486,498,510,522,534,546,558,570,582,594,606,618,630,642,654,666,...
 678,690,702,714,726,738,750,762,774,786,798,810,822,834,846,858,...
 870,882,894,906,918,930,942,954,966,978,990,1002,1014,1026,1038,...
 1050,1062,1074,1086,1098,1110,1122,1134,1146,7,19,31,43,55,67,...
 79,91,103,115,127,139,151,163,175,187,199,211,223,235,247,259,...
 271,283,295,307,319,331,343,355,367,379,391,403,415,427,439,451,...
 463,475,487,499,511,523,535,547,559,571,583,595,607,619,631,643,...
 655,667,679,691,703,715,727,739,751,763,775,787,799,811,823,835,...
 847,859,871,883,895,907,919,931,943,955,967,979,991,1003,1015,...
 1027,1039,1051,1063,1075,1087,1099,1111,1123,1135,1147,8,20,32,...
 44,56,68,80,92,104,116,128,140,152,164,176,188,200,212,224,236,...
 248,260,272,284,296,308,320,332,344,356,368,380,392,404,416,428,...
 440,452,464,476,488,500,512,524,536,548,560,572,584,596,608,620,...
 632,644,656,668,680,692,704,716,728,740,752,764,776,788,800,812,...
 824,836,848,860,872,884,896,908,920,932,944,956,968,980,992,...
 1004,1016,1028,1040,1052,1064,1076,1088,1100,1112,1124,1136,...
 1148,9,21,33,45,57,69,81,93,105,117,129,141,153,165,177,189,201,...
 213,225,237,249,261,273,285,297,309,321,333,345,357,369,381,393,...
 405,417,429,441,453,465,477,489,501,513,525,537,549,561,573,585,...
 597,609,621,633,645,657,669,681,693,705,717,729,741,753,765,777,...
 789,801,813,825,837,849,861,873,885,897,909,921,933,945,957,969,...
 981,993,1005,1017,1029,1041,1053,1065,1077,1089,1101,1113,1125,...
 1137,1149,10,22,34,46,58,70,82,94,106,118,130,142,154,166,178,...
 190,202,214,226,238,250,262,274,286,298,310,322,334,346,358,370,...
 382,394,406,418,430,442,454,466,478,490,502,514,526,538,550,562,...
 574,586,598,610,622,634,646,658,670,682,694,706,718,730,742,754,...
 766,778,790,802,814,826,838,850,862,874,886,898,910,922,934,946,...
 958,970,982,994,1006,1018,1030,1042,1054,1066,1078,1090,1102,...
 1114,1126,1138,1150,11,23,35,47,59,71,83,95,107,119,131,143,155,...
 167,179,191,203,215,227,239,251,263,275,287,299,311,323,335,347,...
 359,371,383,395,407,419,431,443,455,467,479,491,503,515,527,539,...
 551,563,575,587,599,611,623,635,647,659,671,683,695,707,719,731,...
 743,755,767,779,791,803,815,827,839,851,863,875,887,899,911,923,...
 935,947,959,971,983,995,1007,1019,1031,1043,1055,1067,1079,1091,...
 1103,1115,1127,1139,1151,12,24,36,48,60,72,84,96,108,120,132,...
 144,156,168,180,192,204,216,228,240,252,264,276,288,300,312,324,...
 336,348,360,372,384,396,408,420,432,444,456,468,480,492,504,516,...
 528,540,552,564,576,588,600,612,624,636,648,660,672,684,696,708,...
 720,732,744,756,768,780,792,804,816,828,840,852,864,876,888,900,...
 912,924,936,948,960,972,984,996,1008,1020,1032,1044,1056,1068,...
 1080,1092,1104,1116,1128,1140,1152]);
 output = first([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,...
 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,...
 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,...

 130

 84,85,86,87,88,89,90,91,92,93,94,95,96,98,99,97,101,102,100,104,...
 105,103,107,108,106,110,111,109,113,114,112,116,117,115,119,120,...
 118,122,123,121,125,126,124,128,129,127,131,132,130,134,135,133,...
 137,138,136,140,141,139,143,144,142,146,147,145,149,150,148,152,...
 153,151,155,156,154,158,159,157,161,162,160,164,165,163,167,168,...
 166,170,171,169,173,174,172,176,177,175,179,180,178,182,183,181,...
 185,186,184,188,189,187,191,192,190,195,193,194,198,196,197,201,...
 199,200,204,202,203,207,205,206,210,208,209,213,211,212,216,214,...
 215,219,217,218,222,220,221,225,223,224,228,226,227,231,229,230,...
 234,232,233,237,235,236,240,238,239,243,241,242,246,244,245,249,...
 247,248,252,250,251,255,253,254,258,256,257,261,259,260,264,262,...
 263,267,265,266,270,268,269,273,271,272,276,274,275,279,277,278,...
 282,280,281,285,283,284,288,286,287,289,290,291,292,293,294,295,...
 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,...
 312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,...
 328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,...
 344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,...
 360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,...
 376,377,378,379,380,381,382,383,384,386,387,385,389,390,388,392,...
 393,391,395,396,394,398,399,397,401,402,400,404,405,403,407,408,...
 406,410,411,409,413,414,412,416,417,415,419,420,418,422,423,421,...
 425,426,424,428,429,427,431,432,430,434,435,433,437,438,436,440,...
 441,439,443,444,442,446,447,445,449,450,448,452,453,451,455,456,...
 454,458,459,457,461,462,460,464,465,463,467,468,466,470,471,469,...
 473,474,472,476,477,475,479,480,478,483,481,482,486,484,485,489,...
 487,488,492,490,491,495,493,494,498,496,497,501,499,500,504,502,...
 503,507,505,506,510,508,509,513,511,512,516,514,515,519,517,518,...
 522,520,521,525,523,524,528,526,527,531,529,530,534,532,533,537,...
 535,536,540,538,539,543,541,542,546,544,545,549,547,548,552,550,...
 551,555,553,554,558,556,557,561,559,560,564,562,563,567,565,566,...
 570,568,569,573,571,572,576,574,575,577,578,579,580,581,582,583,...
 584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,...
 600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,...
 616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,...
 632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,...
 648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,...
 664,665,666,667,668,669,670,671,672,674,675,673,677,678,676,680,...
 681,679,683,684,682,686,687,685,689,690,688,692,693,691,695,696,...
 694,698,699,697,701,702,700,704,705,703,707,708,706,710,711,709,...
 713,714,712,716,717,715,719,720,718,722,723,721,725,726,724,728,...
 729,727,731,732,730,734,735,733,737,738,736,740,741,739,743,744,...
 742,746,747,745,749,750,748,752,753,751,755,756,754,758,759,757,...
 761,762,760,764,765,763,767,768,766,771,769,770,774,772,773,777,...
 775,776,780,778,779,783,781,782,786,784,785,789,787,788,792,790,...
 791,795,793,794,798,796,797,801,799,800,804,802,803,807,805,806,...

 131

 810,808,809,813,811,812,816,814,815,819,817,818,822,820,821,825,...
 823,824,828,826,827,831,829,830,834,832,833,837,835,836,840,838,...
 839,843,841,842,846,844,845,849,847,848,852,850,851,855,853,854,...
 858,856,857,861,859,860,864,862,863,865,866,867,868,869,870,871,...
 872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,...
 888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,...
 904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,...
 920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,...
 936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,...
 952,953,954,955,956,957,958,959,960,962,963,961,965,966,964,968,...
 969,967,971,972,970,974,975,973,977,978,976,980,981,979,983,984,...
 982,986,987,985,989,990,988,992,993,991,995,996,994,998,999,997,...
 1001,1002,1000,1004,1005,1003,1007,1008,1006,1010,1011,1009,...
 1013,1014,1012,1016,1017,1015,1019,1020,1018,1022,1023,1021,...
 1025,1026,1024,1028,1029,1027,1031,1032,1030,1034,1035,1033,...
 1037,1038,1036,1040,1041,1039,1043,1044,1042,1046,1047,1045,...
 1049,1050,1048,1052,1053,1051,1055,1056,1054,1059,1057,1058,...
 1062,1060,1061,1065,1063,1064,1068,1066,1067,1071,1069,1070,...
 1074,1072,1073,1077,1075,1076,1080,1078,1079,1083,1081,1082,...
 1086,1084,1085,1089,1087,1088,1092,1090,1091,1095,1093,1094,...
 1098,1096,1097,1101,1099,1100,1104,1102,1103,1107,1105,1106,...
 1110,1108,1109,1113,1111,1112,1116,1114,1115,1119,1117,1118,...
 1122,1120,1121,1125,1123,1124,1128,1126,1127,1131,1129,1130,...
 1134,1132,1133,1137,1135,1136,1140,1138,1139,1143,1141,1142,...
 1146,1144,1145,1149,1147,1148,1152,1150,1151]);
end

 132

function [output] = Randomizer(input,burst_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Randomizer.m
%
% this function randomizes the data per the 802.16e standard
% this is for the downlink only
% input data is to enter MSB first.
%
% Input: %
% input: MAC layer data bits
% burst_number: number of burst in transmission
%
% Output: %
% output: scrambled bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%for testing; further implementation will make this variable
BSID = [0 0 0 1];
UIUC = [0 1 1 1];
Frame_number = [0 0 0 1];

%if start of frame set initial state
if burst_number ==1
 reg = [1 0 0 1 0 1 0 1 0 0 0 0 0 0 0]';
else
 reg = [BSID 1 1 UIUC 1 Frame_number]'; %initializer for UL also
end

output=zeros(1,length(input));
for i = 1:length(input)
 new = xor(reg(14),reg(15));
 reg = [new; reg(1:14)]; %shift bits left one
 output(i) = xor(new,input(i)); % modulo 2 add output with data bit
end

output = [output zeros(1,8)]; %add pad byte of zeros per standard

 133

 134

function [output]= RScoding(input,mod_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% RScoding.m
%
% Perform shortened Reed-Solomon encoding; shortening depends on
% modulation for transmission; bits must first be converted to an 8-bit
% Galois field; then after encoding converted back to binary;
% very slow code;
%
% Input: %
% input: radomized data
% mod_number: modulation code number
% Output: %
% output: shortended Reed-Solomon coded data
%
% Author: Keith Howland
% Created: 20 Apr 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%==%
%need t for shortened Reed Solomon coding to know what redundant bits to
 %discard
if mod_number == 0
 output = input; %no RS coding here
 return
elseif mod_number ==1
 t=4;
elseif mod_number ==2
 t=2;
elseif mod_number ==3
 t = 8;
elseif mod_number ==4
 t = 4;
elseif mod_number == 5
 t = 6;
else
 t = 6;
end
%===%

 135

%input to Galois field must be integer 1-2^m-1;m=8;
input=make8Bit(input);

%Create a Galois array in GF(2^8).
msg = gf(input,8);

len = length(msg);
%determine zeros prefix for shortened RS code
zero_pad = 239 - length(input)+1;
msg_pad = [zeros(1,zero_pad-1) msg]; %prefix zeros
% the key is the zero at the end to specify RS generation polynomial;
% has to due with how Matlab uses the employs the generaor polynomial
gen=rsgenpoly(255,239,285,0);
%Encode the information symbols;very slow function!!!
rscoded = rsenc(msg_pad,255,239,gen);
 %get array in usable form
rs_array = rscoded.x;
%remove extra zeros
data = rs_array(zero_pad:zero_pad + len-1);
 %remove extra redundant bits
redundant = rs_array(zero_pad +len: zero_pad +len + 2*t-1);
%redundant bits sent first
rs_array = [redundant data];
%===%

%====================================%
%convert to binary
rs_bin_8=zeros(1,8);
rs_out=[];
for i = 1:length(rs_array)
 rs_char = dec2bin(rs_array(i),8);
 for j=1:8
 rs_bin_8(j) =str2double(rs_char(j));
 rs_out = [rs_out rs_bin_8(j)];
 end
end
%===================================%
%prepare output
output=rs_out';

 136

function [reg] = CRC(input)
%this function scrambles the data bits as per page 18 of 802.11b-1999

reg = zeros(1,8); %set initial state
for i = 1:length(input)
 reg8 = xor(reg(1),input(i)); %my reg16 = X(0); in other words reversed
 reg7 = xor(reg(8),reg8);
 reg6 = xor(reg(7),reg8);
 %shift bits left one
 reg = [reg(2:6) reg6 reg7 reg8];
end

test = [1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 ...
 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 zeros(1,32)];

test2 = [1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 ...
 0 0 0 0 1 1 1 1];

 137

function [output] = deCode16(bits,mod_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deCode16.m
%
% de-encode binary convolution coding; constraint length 7
% G0 = 171; G1 = 133; uses soft decision decoding with viterbi algorithm
%
% Input: %
% bits: deinterleaved bits
% mod_number: type of modulation
%
% Output: %
% output: decoded bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trellis = poly2trellis(7,[171 133]);
table_length = 7;

if mod_number == 0
 %To prepare for soft-decision decoding, map to decision values.
 [x,qcode] = quantiz(1-2*bits,[-.75 -.5 -.25 0 .25 .5 .75],...
 [7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.
 output = vitdec(qcode,trellis,table_length, 'trunc','soft',3);
elseif mod_number ==1 || mod_number ==3
 %To prepare for soft-decision decoding, map to decision values.
 [x,qcode] = quantiz(1-2*bits,[-.75 -.5 -.25 0 .25 .5 .75],...
 [7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.
 output = vitdec(qcode,trellis,table_length, 'trunc','soft',3,[1 1 0 1]);
elseif mod_number == 5
 %To prepare for soft-decision decoding, map to decision values.
 [x,qcode] = quantiz(1-2*bits,[-.75 -.5 -.25 0 .25 .5 .75],...
 [7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.
 output = vitdec(qcode,trellis,table_length, 'trunc','soft',3,[1 1 0 1 1 0]);
elseif mod_number == 2 || mod_number ==4 || mod_number == 6
 %To prepare for soft-decision decoding, map to decision values.
 [x,qcode] = quantiz(1-2*bits,[-.75 -.5 -.25 0 .25 .5 .75],...

 138

 [7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.
 output = vitdec(qcode,trellis,table_length, 'trunc','soft',3,[1 1 0 1 1 0 0 1 1 0]);
end

 139

function [output] = deinterleaver16(bits,mod_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deinterleaver16.m
%
% this function performs data interleaving per page 17 of PHY section of
% 802.11a standard
%
% Input: %
% bits: vector of bits to be interleaved
% mod_number: type of modulation
%
% Output: %
% output: decoded bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if mod_number == 0
 first =bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...
 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,...
 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,...
 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,...
 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,...
 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,...
 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,...
 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,...
 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,...
 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,...
 184,185,186,187,188,189,190,191,192]);
 output = first([1,17,33,49,65,81,97,113,129,145,161,177,2,18,34,50,...
 66,82,98,114,130,146,162,178,3,19,35,51,67,83,99,115,131,147,163,...
 179,4,20,36,52,68,84,100,116,132,148,164,180,5,21,37,53,69,85,...
 101,117,133,149,165,181,6,22,38,54,70,86,102,118,134,150,166,...
 182,7,23,39,55,71,87,103,119,135,151,167,183,8,24,40,56,72,88,...
 104,120,136,152,168,184,9,25,41,57,73,89,105,121,137,153,169,...
 185,10,26,42,58,74,90,106,122,138,154,170,186,11,27,43,59,75,91,...
 107,123,139,155,171,187,12,28,44,60,76,92,108,124,140,156,172,...
 188,13,29,45,61,77,93,109,125,141,157,173,189,14,30,46,62,78,94,...

 140

 110,126,142,158,174,190,15,31,47,63,79,95,111,127,143,159,175,...
 191,16,32,48,64,80,96,112,128,144,160,176,192]);
elseif mod_number == 1 || mod_number == 2
 first = bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...
 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,...
 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,...
 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,...
 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,...
 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,...
 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,...
 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,...
 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,...
 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,...
 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,...
 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,...
 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,...
 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,...
 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,...
 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,...
 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,...
 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,...
 312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,...
 328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,...
 344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,...
 360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,...
 376,377,378,379,380,381,382,383,384]);
 output = first([1,33,65,97,129,161,193,225,257,289,321,353,2,34,66,...
 98,130,162,194,226,258,290,322,354,3,35,67,99,131,163,195,227,...
 259,291,323,355,4,36,68,100,132,164,196,228,260,292,324,356,5,...
 37,69,101,133,165,197,229,261,293,325,357,6,38,70,102,134,166,...
 198,230,262,294,326,358,7,39,71,103,135,167,199,231,263,295,327,...
 359,8,40,72,104,136,168,200,232,264,296,328,360,9,41,73,105,137,...
 169,201,233,265,297,329,361,10,42,74,106,138,170,202,234,266,...
 298,330,362,11,43,75,107,139,171,203,235,267,299,331,363,12,44,...
 76,108,140,172,204,236,268,300,332,364,13,45,77,109,141,173,205,...
 237,269,301,333,365,14,46,78,110,142,174,206,238,270,302,334,...
 366,15,47,79,111,143,175,207,239,271,303,335,367,16,48,80,112,...
 144,176,208,240,272,304,336,368,17,49,81,113,145,177,209,241,...
 273,305,337,369,18,50,82,114,146,178,210,242,274,306,338,370,...
 19,51,83,115,147,179,211,243,275,307,339,371,20,52,84,116,148,...
 180,212,244,276,308,340,372,21,53,85,117,149,181,213,245,277,...
 309,341,373,22,54,86,118,150,182,214,246,278,310,342,374,23,55,...
 87,119,151,183,215,247,279,311,343,375,24,56,88,120,152,184,216,...
 248,280,312,344,376,25,57,89,121,153,185,217,249,281,313,345,...
 377,26,58,90,122,154,186,218,250,282,314,346,378,27,59,91,123,...

 141

 155,187,219,251,283,315,347,379,28,60,92,124,156,188,220,252,...
 284,316,348,380,29,61,93,125,157,189,221,253,285,317,349,381,30,...
 62,94,126,158,190,222,254,286,318,350,382,31,63,95,127,159,191,...
 223,255,287,319,351,383,32,64,96,128,160,192,224,256,288,320,...
 352,384]);
elseif mod_number ==3 || mod_number ==4
 first = bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...
 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,...
 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,...
 64,66,65,68,67,70,69,72,71,74,73,76,75,78,77,80,79,82,81,84,83,...
 86,85,88,87,90,89,92,91,94,93,96,95,98,97,100,99,102,101,104,...
 103,106,105,108,107,110,109,112,111,114,113,116,115,118,117,120,...
 119,122,121,124,123,126,125,128,127,129,130,131,132,133,134,135,...
 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,...
 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,...
 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,...
 184,185,186,187,188,189,190,191,192,194,193,196,195,198,197,200,...
 199,202,201,204,203,206,205,208,207,210,209,212,211,214,213,216,...
 215,218,217,220,219,222,221,224,223,226,225,228,227,230,229,232,...
 231,234,233,236,235,238,237,240,239,242,241,244,243,246,245,248,...
 247,250,249,252,251,254,253,256,255,257,258,259,260,261,262,263,...
 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,...
 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,...
 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,...
 312,313,314,315,316,317,318,319,320,322,321,324,323,326,325,328,...
 327,330,329,332,331,334,333,336,335,338,337,340,339,342,341,344,...
 343,346,345,348,347,350,349,352,351,354,353,356,355,358,357,360,...
 359,362,361,364,363,366,365,368,367,370,369,372,371,374,373,376,...
 375,378,377,380,379,382,381,384,383,385,386,387,388,389,390,391,...
 392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,...
 408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,...
 424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,...
 440,441,442,443,444,445,446,447,448,450,449,452,451,454,453,456,...
 455,458,457,460,459,462,461,464,463,466,465,468,467,470,469,472,...
 471,474,473,476,475,478,477,480,479,482,481,484,483,486,485,488,...
 487,490,489,492,491,494,493,496,495,498,497,500,499,502,501,504,...
 503,506,505,508,507,510,509,512,511,513,514,515,516,517,518,519,...
 520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,...
 536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,...
 552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,...
 568,569,570,571,572,573,574,575,576,578,577,580,579,582,581,584,...
 583,586,585,588,587,590,589,592,591,594,593,596,595,598,597,600,...
 599,602,601,604,603,606,605,608,607,610,609,612,611,614,613,616,...
 615,618,617,620,619,622,621,624,623,626,625,628,627,630,629,632,...
 631,634,633,636,635,638,637,640,639,641,642,643,644,645,646,647,...

 142

 648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,...
 664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,...
 680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,...
 696,697,698,699,700,701,702,703,704,706,705,708,707,710,709,712,...
 711,714,713,716,715,718,717,720,719,722,721,724,723,726,725,728,...
 727,730,729,732,731,734,733,736,735,738,737,740,739,742,741,744,...
 743,746,745,748,747,750,749,752,751,754,753,756,755,758,757,760,...
 759,762,761,764,763,766,765,768,767]);
 output= first([1,65,129,193,257,321,385,449,513,577,641,705,2,66,...
 130,194,258,322,386,450,514,578,642,706,3,67,131,195,259,323,...
 387,451,515,579,643,707,4,68,132,196,260,324,388,452,516,580,...
 644,708,5,69,133,197,261,325,389,453,517,581,645,709,6,70,134,...
 198,262,326,390,454,518,582,646,710,7,71,135,199,263,327,391,...
 455,519,583,647,711,8,72,136,200,264,328,392,456,520,584,648,...
 712,9,73,137,201,265,329,393,457,521,585,649,713,10,74,138,202,...
 266,330,394,458,522,586,650,714,11,75,139,203,267,331,395,459,...
 523,587,651,715,12,76,140,204,268,332,396,460,524,588,652,716,...
 13,77,141,205,269,333,397,461,525,589,653,717,14,78,142,206,270,...
 334,398,462,526,590,654,718,15,79,143,207,271,335,399,463,527,...
 591,655,719,16,80,144,208,272,336,400,464,528,592,656,720,17,81,...
 145,209,273,337,401,465,529,593,657,721,18,82,146,210,274,338,...
 402,466,530,594,658,722,19,83,147,211,275,339,403,467,531,595,...
 659,723,20,84,148,212,276,340,404,468,532,596,660,724,21,85,149,...
 213,277,341,405,469,533,597,661,725,22,86,150,214,278,342,406,...
 470,534,598,662,726,23,87,151,215,279,343,407,471,535,599,663,...
 727,24,88,152,216,280,344,408,472,536,600,664,728,25,89,153,217,...
 281,345,409,473,537,601,665,729,26,90,154,218,282,346,410,474,...
 538,602,666,730,27,91,155,219,283,347,411,475,539,603,667,731,...
 28,92,156,220,284,348,412,476,540,604,668,732,29,93,157,221,285,...
 349,413,477,541,605,669,733,30,94,158,222,286,350,414,478,542,...
 606,670,734,31,95,159,223,287,351,415,479,543,607,671,735,32,96,...
 160,224,288,352,416,480,544,608,672,736,33,97,161,225,289,353,...
 417,481,545,609,673,737,34,98,162,226,290,354,418,482,546,610,...
 674,738,35,99,163,227,291,355,419,483,547,611,675,739,36,100,...
 164,228,292,356,420,484,548,612,676,740,37,101,165,229,293,357,...
 421,485,549,613,677,741,38,102,166,230,294,358,422,486,550,614,...
 678,742,39,103,167,231,295,359,423,487,551,615,679,743,40,104,...
 168,232,296,360,424,488,552,616,680,744,41,105,169,233,297,361,...
 425,489,553,617,681,745,42,106,170,234,298,362,426,490,554,618,...
 682,746,43,107,171,235,299,363,427,491,555,619,683,747,44,108,...
 172,236,300,364,428,492,556,620,684,748,45,109,173,237,301,365,...
 429,493,557,621,685,749,46,110,174,238,302,366,430,494,558,622,...
 686,750,47,111,175,239,303,367,431,495,559,623,687,751,48,112,...
 176,240,304,368,432,496,560,624,688,752,49,113,177,241,305,369,...
 433,497,561,625,689,753,50,114,178,242,306,370,434,498,562,626,...

 143

 690,754,51,115,179,243,307,371,435,499,563,627,691,755,52,116,...
 180,244,308,372,436,500,564,628,692,756,53,117,181,245,309,373,...
 437,501,565,629,693,757,54,118,182,246,310,374,438,502,566,630,...
 694,758,55,119,183,247,311,375,439,503,567,631,695,759,56,120,...
 184,248,312,376,440,504,568,632,696,760,57,121,185,249,313,377,...
 441,505,569,633,697,761,58,122,186,250,314,378,442,506,570,634,...
 698,762,59,123,187,251,315,379,443,507,571,635,699,763,60,124,...
 188,252,316,380,444,508,572,636,700,764,61,125,189,253,317,381,...
 445,509,573,637,701,765,62,126,190,254,318,382,446,510,574,638,...
 702,766,63,127,191,255,319,383,447,511,575,639,703,767,64,128,...
 192,256,320,384,448,512,576,640,704,768]);
elseif mod_number == 5 || mod_number ==6
 first = bits([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...
 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,...
 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,...
 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,...
 85,86,87,88,89,90,91,92,93,94,95,96,99,97,98,102,100,101,105,...
 103,104,108,106,107,111,109,110,114,112,113,117,115,116,120,118,...
 119,123,121,122,126,124,125,129,127,128,132,130,131,135,133,134,...
 138,136,137,141,139,140,144,142,143,147,145,146,150,148,149,153,...
 151,152,156,154,155,159,157,158,162,160,161,165,163,164,168,166,...
 167,171,169,170,174,172,173,177,175,176,180,178,179,183,181,182,...
 186,184,185,189,187,188,192,190,191,194,195,193,197,198,196,200,...
 201,199,203,204,202,206,207,205,209,210,208,212,213,211,215,216,...
 214,218,219,217,221,222,220,224,225,223,227,228,226,230,231,229,...
 233,234,232,236,237,235,239,240,238,242,243,241,245,246,244,248,...
 249,247,251,252,250,254,255,253,257,258,256,260,261,259,263,264,...
 262,266,267,265,269,270,268,272,273,271,275,276,274,278,279,277,...
 281,282,280,284,285,283,287,288,286,289,290,291,292,293,294,295,...
 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,...
 312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,...
 328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,...
 344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,...
 360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,...
 376,377,378,379,380,381,382,383,384,387,385,386,390,388,389,393,...
 391,392,396,394,395,399,397,398,402,400,401,405,403,404,408,406,...
 407,411,409,410,414,412,413,417,415,416,420,418,419,423,421,422,...
 426,424,425,429,427,428,432,430,431,435,433,434,438,436,437,441,...
 439,440,444,442,443,447,445,446,450,448,449,453,451,452,456,454,...
 455,459,457,458,462,460,461,465,463,464,468,466,467,471,469,470,...
 474,472,473,477,475,476,480,478,479,482,483,481,485,486,484,488,...
 489,487,491,492,490,494,495,493,497,498,496,500,501,499,503,504,...
 502,506,507,505,509,510,508,512,513,511,515,516,514,518,519,517,...
 521,522,520,524,525,523,527,528,526,530,531,529,533,534,532,536,...
 537,535,539,540,538,542,543,541,545,546,544,548,549,547,551,552,...

 144

 550,554,555,553,557,558,556,560,561,559,563,564,562,566,567,565,...
 569,570,568,572,573,571,575,576,574,577,578,579,580,581,582,583,...
 584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,...
 600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,...
 616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,...
 632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,...
 648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,...
 664,665,666,667,668,669,670,671,672,675,673,674,678,676,677,681,...
 679,680,684,682,683,687,685,686,690,688,689,693,691,692,696,694,...
 695,699,697,698,702,700,701,705,703,704,708,706,707,711,709,710,...
 714,712,713,717,715,716,720,718,719,723,721,722,726,724,725,729,...
 727,728,732,730,731,735,733,734,738,736,737,741,739,740,744,742,...
 743,747,745,746,750,748,749,753,751,752,756,754,755,759,757,758,...
 762,760,761,765,763,764,768,766,767,770,771,769,773,774,772,776,...
 777,775,779,780,778,782,783,781,785,786,784,788,789,787,791,792,...
 790,794,795,793,797,798,796,800,801,799,803,804,802,806,807,805,...
 809,810,808,812,813,811,815,816,814,818,819,817,821,822,820,824,...
 825,823,827,828,826,830,831,829,833,834,832,836,837,835,839,840,...
 838,842,843,841,845,846,844,848,849,847,851,852,850,854,855,853,...
 857,858,856,860,861,859,863,864,862,865,866,867,868,869,870,871,...
 872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,...
 888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,...
 904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,...
 920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,...
 936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,...
 952,953,954,955,956,957,958,959,960,963,961,962,966,964,965,969,...
 967,968,972,970,971,975,973,974,978,976,977,981,979,980,984,982,...
 983,987,985,986,990,988,989,993,991,992,996,994,995,999,997,998,...
 1002,1000,1001,1005,1003,1004,1008,1006,1007,1011,1009,1010,...
 1014,1012,1013,1017,1015,1016,1020,1018,1019,1023,1021,1022,...
 1026,1024,1025,1029,1027,1028,1032,1030,1031,1035,1033,1034,...
 1038,1036,1037,1041,1039,1040,1044,1042,1043,1047,1045,1046,...
 1050,1048,1049,1053,1051,1052,1056,1054,1055,1058,1059,1057,...
 1061,1062,1060,1064,1065,1063,1067,1068,1066,1070,1071,1069,...
 1073,1074,1072,1076,1077,1075,1079,1080,1078,1082,1083,1081,...
 1085,1086,1084,1088,1089,1087,1091,1092,1090,1094,1095,1093,...
 1097,1098,1096,1100,1101,1099,1103,1104,1102,1106,1107,1105,...
 1109,1110,1108,1112,1113,1111,1115,1116,1114,1118,1119,1117,...
 1121,1122,1120,1124,1125,1123,1127,1128,1126,1130,1131,1129,...
 1133,1134,1132,1136,1137,1135,1139,1140,1138,1142,1143,1141,...
 1145,1146,1144,1148,1149,1147,1151,1152,1150]);
 output = first([1,97,193,289,385,481,577,673,769,865,961,1057,2,98,...
 194,290,386,482,578,674,770,866,962,1058,3,99,195,291,387,483,...
 579,675,771,867,963,1059,4,100,196,292,388,484,580,676,772,868,...
 964,1060,5,101,197,293,389,485,581,677,773,869,965,1061,6,102,...

 145

 198,294,390,486,582,678,774,870,966,1062,7,103,199,295,391,487,...
 583,679,775,871,967,1063,8,104,200,296,392,488,584,680,776,872,...
 968,1064,9,105,201,297,393,489,585,681,777,873,969,1065,10,106,...
 202,298,394,490,586,682,778,874,970,1066,11,107,203,299,395,491,...
 587,683,779,875,971,1067,12,108,204,300,396,492,588,684,780,876,...
 972,1068,13,109,205,301,397,493,589,685,781,877,973,1069,14,110,...
 206,302,398,494,590,686,782,878,974,1070,15,111,207,303,399,495,...
 591,687,783,879,975,1071,16,112,208,304,400,496,592,688,784,880,...
 976,1072,17,113,209,305,401,497,593,689,785,881,977,1073,18,114,...
 210,306,402,498,594,690,786,882,978,1074,19,115,211,307,403,499,...
 595,691,787,883,979,1075,20,116,212,308,404,500,596,692,788,884,...
 980,1076,21,117,213,309,405,501,597,693,789,885,981,1077,22,118,...
 214,310,406,502,598,694,790,886,982,1078,23,119,215,311,407,503,...
 599,695,791,887,983,1079,24,120,216,312,408,504,600,696,792,888,...
 984,1080,25,121,217,313,409,505,601,697,793,889,985,1081,26,122,...
 218,314,410,506,602,698,794,890,986,1082,27,123,219,315,411,507,...
 603,699,795,891,987,1083,28,124,220,316,412,508,604,700,796,892,...
 988,1084,29,125,221,317,413,509,605,701,797,893,989,1085,30,126,...
 222,318,414,510,606,702,798,894,990,1086,31,127,223,319,415,511,...
 607,703,799,895,991,1087,32,128,224,320,416,512,608,704,800,896,...
 992,1088,33,129,225,321,417,513,609,705,801,897,993,1089,34,130,...
 226,322,418,514,610,706,802,898,994,1090,35,131,227,323,419,515,...
 611,707,803,899,995,1091,36,132,228,324,420,516,612,708,804,900,...
 996,1092,37,133,229,325,421,517,613,709,805,901,997,1093,38,134,...
 230,326,422,518,614,710,806,902,998,1094,39,135,231,327,423,519,...
 615,711,807,903,999,1095,40,136,232,328,424,520,616,712,808,904,...
 1000,1096,41,137,233,329,425,521,617,713,809,905,1001,1097,42,...
 138,234,330,426,522,618,714,810,906,1002,1098,43,139,235,331,...
 427,523,619,715,811,907,1003,1099,44,140,236,332,428,524,620,...
 716,812,908,1004,1100,45,141,237,333,429,525,621,717,813,909,...
 1005,1101,46,142,238,334,430,526,622,718,814,910,1006,1102,47,...
 143,239,335,431,527,623,719,815,911,1007,1103,48,144,240,336,...
 432,528,624,720,816,912,1008,1104,49,145,241,337,433,529,625,...
 721,817,913,1009,1105,50,146,242,338,434,530,626,722,818,914,...
 1010,1106,51,147,243,339,435,531,627,723,819,915,1011,1107,52,...
 148,244,340,436,532,628,724,820,916,1012,1108,53,149,245,341,...
 437,533,629,725,821,917,1013,1109,54,150,246,342,438,534,630,...
 726,822,918,1014,1110,55,151,247,343,439,535,631,727,823,919,...
 1015,1111,56,152,248,344,440,536,632,728,824,920,1016,1112,57,...
 153,249,345,441,537,633,729,825,921,1017,1113,58,154,250,346,...
 442,538,634,730,826,922,1018,1114,59,155,251,347,443,539,635,...
 731,827,923,1019,1115,60,156,252,348,444,540,636,732,828,924,...
 1020,1116,61,157,253,349,445,541,637,733,829,925,1021,1117,62,...
 158,254,350,446,542,638,734,830,926,1022,1118,63,159,255,351,...
 447,543,639,735,831,927,1023,1119,64,160,256,352,448,544,640,...

 146

 736,832,928,1024,1120,65,161,257,353,449,545,641,737,833,929,...
 1025,1121,66,162,258,354,450,546,642,738,834,930,1026,1122,67,...
 163,259,355,451,547,643,739,835,931,1027,1123,68,164,260,356,...
 452,548,644,740,836,932,1028,1124,69,165,261,357,453,549,645,...
 741,837,933,1029,1125,70,166,262,358,454,550,646,742,838,934,...
 1030,1126,71,167,263,359,455,551,647,743,839,935,1031,1127,72,...
 168,264,360,456,552,648,744,840,936,1032,1128,73,169,265,361,...
 457,553,649,745,841,937,1033,1129,74,170,266,362,458,554,650,...
 746,842,938,1034,1130,75,171,267,363,459,555,651,747,843,939,...
 1035,1131,76,172,268,364,460,556,652,748,844,940,1036,1132,77,...
 173,269,365,461,557,653,749,845,941,1037,1133,78,174,270,366,...
 462,558,654,750,846,942,1038,1134,79,175,271,367,463,559,655,...
 751,847,943,1039,1135,80,176,272,368,464,560,656,752,848,944,...
 1040,1136,81,177,273,369,465,561,657,753,849,945,1041,1137,82,...
 178,274,370,466,562,658,754,850,946,1042,1138,83,179,275,371,...
 467,563,659,755,851,947,1043,1139,84,180,276,372,468,564,660,...
 756,852,948,1044,1140,85,181,277,373,469,565,661,757,853,949,...
 1045,1141,86,182,278,374,470,566,662,758,854,950,1046,1142,87,...
 183,279,375,471,567,663,759,855,951,1047,1143,88,184,280,376,...
 472,568,664,760,856,952,1048,1144,89,185,281,377,473,569,665,...
 761,857,953,1049,1145,90,186,282,378,474,570,666,762,858,954,...
 1050,1146,91,187,283,379,475,571,667,763,859,955,1051,1147,92,...
 188,284,380,476,572,668,764,860,956,1052,1148,93,189,285,381,...
 477,573,669,765,861,957,1053,1149,94,190,286,382,478,574,670,...
 766,862,958,1054,1150,95,191,287,383,479,575,671,767,863,959,...
 1055,1151,96,192,288,384,480,576,672,768,864,960,1056,1152]);
end

 147

function [output,rec_fch,HCS_check] = ...
 demodData16(input,H,start_of_data,mod_number_sent)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% demodData16.m
%
% demodulate the received signal samples after synchronization
% perform serial to parallel conversion, take FFT, apply channel
% correction; read PLCP header
%
% Input: %
% input: received signal from channel
% H: channel correction values
% start_of_data: sample number where header starts
% mod_number_sent: for error checking
%
% Output: %
% output: received data bits
% rec_fch: received header bits
% HCS_check: 1 - good CRC check; 0 - bad CRC check
%
% Calls:
% FFTmap16.m: rearrange input for FFT
% signalDemodulate16.m: map back to bits
% deCode16.m: deconvolutional code
% deRandomizer.m: un-randomize data
% HCS.m: check CRC
% deRS.m: undo Reed-Solomon coding
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%load in stored values
load INTL;load RS; load CC; load Input_Data; load RD;
%%%
%%%%

input = input(start_of_data:end);
%%%
%%%
%check that received data fits in blocks of 320

 148

%based on CP of 64; 64+256 = 320
%will need to make this variable
CPSYM=320;
len = length(input);
if rem(len,CPSYM) ~= 0
 pad = CPSYM - rem(len,CPSYM);
else pad =0;
end
y1 = [input; zeros(pad,1)];
%Reshape data; 64 + 16 = 80; serial to parallel
y2=reshape(y1,CPSYM,length(y1)/CPSYM);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

y3 = y2(65:320,:); %strip off cyclic prefix
Y=fft(y3,256); %bring in to freq domain
%figure;plot(Y(:,1).*conj(Y(:,1)));title('Signal Spectrum')
rec_data=Y([2:13,15:38,40:63,65:88,90:101,157:168,170:193,195:218,...
 220:243,245:256],:); %remove pilots and nulls

% %plot constellation
% yplot=rec_data(:);
% h=scatterplot(yplot(1:192),1,0,'+r');
% hold on;
% scatterplot(yplot(193:end),1,0,'ob',h);
% title('Constellation of Received Signal and Data fields');
% legend('Signal','Data');
% hold off
%%

% %apply channel estimation correction
% H1=H([2:13,15:38,40:63,65:88,90:101,157:168,170:193,...
% 195:218,220:243,245:256]);
% corrected_data=zeros(size(rec_data));
% for i = 1:1%size(rec_data,2)
% corrected_data(:,i) = rec_data(:,i)./H.';
% end
% ynewplot = corrected_data(:);
% scatterplot(ynewplot);title('Channel Corrected Constellation')
% rec_data = corrected_data;
%%

%Process FCH Symbol
fch = FFTmap16(rec_data(:,1));
demod_fch = signalDemodulate16(fch,0);
deint_fch = deinterleaver16(demod_fch,0);

 149

decc_fch = deCode16(deint_fch,0); %just cc no rs with FCH
rec_fch = deRandomizer(decc_fch,2);
rec_fch=rec_fch(1:96-8)'; %remove pad zeros

mod_number = rec_fch(17:20)'; %these bits hold rate_ID for burst
rec_hcs(1,:) = rec_fch(81:88);
calc_hcs = HCS(rec_fch(1:80));
if rec_hcs == calc_hcs
 %display('HCS Good')
 HCS_check = 1;
else
 %display('HCS Bad')
 HCS_check =0;
end

mod_number = bin2dec(num2str(mod_number));
if mod_number ~= mod_number_sent
 %display('SNR too low. Demodulation failed.')
 output =0;
 return
end
%%%
%Process received signal
rec_data2=rec_data(:,2:end); %strip off fch symbol

output=[];%need to need mod_num and get num of uncoded bits - 8 for rows
for i = 1: size(rec_data2,2)
 %i
 data = FFTmap16(rec_data2(:,i));
 %demodulate signal
 demod_data= signalDemodulate16(data,mod_number);
 %deinterleave
 deinterleaved_data= deinterleaver16(demod_data,mod_number);
 %de-convolution code siganl
 de_cc_data= deCode16(deinterleaved_data,mod_number);
 %de Reed Solomon code the signal
 de_rs_data = deRS(de_cc_data,mod_number);
 %derandomize the signal
 output(:,i)= deRandomizer(de_rs_data,2);
end
%%%
%%%%%%%%%
output = output(:);

 150

function [output] = deRandomizer(input,burst_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deRandomizer.m
%
% this function derandomizes the data per the 802.16e standard
% this is for the downlink only
% input data is to enter MSB first.

%
% Input: %
% input: decoded bits
% burst_number: which burst in transmission; for initial state
%
% Output: %
% output: data bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%for testing
BSID = [0 0 0 1];
UIUC = [0 1 1 1];
Frame_number = [0 0 0 1];

%if start of frame set initial state
if burst_number ==1
 reg = [1 0 0 1 0 1 0 1 0 0 0 0 0 0 0]';
else
 reg = [BSID 1 1 UIUC 1 Frame_number]';
end

output=zeros(1,length(input));
for i = 1:length(input)
 new = xor(reg(14),reg(15));
 %shift bits left one
 reg = [new; reg(1:14)];
 % modulo 2 add output with data bit
 output(i) = xor(new,input(i));

 151

end

 152

function [output] = deRS(input,mod_number)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deRS.m
%
% this function removes the Reed-Solomon coding

%
% Input: %
% input: decoded bits from binary convolution coding
% mod_number: type of modulation
%
% Output: %
% output: bits ready for derandomizing
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if mod_number ==0
 output = input(1:end-8);
 return
elseif mod_number == 1
 lim = 24;
 t=4;
elseif mod_number == 2
 lim = 36;
 t=2;
elseif mod_number == 3
 lim = 48;
 t=8;
elseif mod_number == 4
 lim = 72;
 t=4;
elseif mod_number == 5
 lim = 96;
 t=6;
elseif mod_number == 6
 lim = 108;

 153

 t=6;
end

input=make8Bit(input); %input to Galois field must be integer 1-2^m-1;m=8;
msg = gf(input,8); %Create a Galois array in GF(2^8).
code = [msg(2*t+1:end) msg(1:2*t)];
code1 = [code zeros(1,255 - length(code))];
gen=rsgenpoly(255,239,285,0);
decode = rsdec(code1,255,239,gen);
decode1 = decode.x;

decode2 = decode1(1:lim); %remove redundant and zeros and zero byte tail

rs_bin_8 = zeros(1,8);
rs_out=[];
for i = 1:lim
 rs_char = dec2bin(decode2(i),8);
 for j=1:8
 rs_bin_8(j) =str2double(rs_char(j));
 rs_out = [rs_out rs_bin_8(j)];
 end
end

output=rs_out';
output=output(1:end-8);

 154

function [signal_detected,H,start_of_data] = synch16(input,Th)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% synch16.m
%
% this function performs signal detection using cross correlation;
% then finds start of data and finds channel estimation
%
% Input: %
% input: received samples from channel
% Th: detection threshold
%
% Output: %
% signal_detected: 1 - signal detected; 0 - no detection
% H: channel correction coefficients
% start_of_data: index for start of header
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 Mar 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load preamble_1_fc %time domain of first 64 samples
 %of first preamble symbol, flipped and
 %conjugated for correlation
load long_preamble
signal_detected=0;
%first preamble correlation
lp_power = long_preamble(1:64)'*long_preamble(1:64);
Rsp = filter(preamble_1_fc,1,input)/lp_power;
mRsp=(Rsp .* conj(Rsp));
%figure;plot(mRsp);title('Magnitude of first Preamble Autocorrelation')
%xlabel('Sample Index n');ylabel('Magnitude');

%64 samples after last peak starts the long preamble
for i = 1:length(mRsp)
 if mRsp(i) > Th && mRsp(i-64) > Th && mRsp(i-64*2) > Th ...
 && mRsp(i-64*3) > Th && mRsp(i-64*4) > Th && mRsp(i-64*5) < Th
 start_of_data = i + 320 + 1;
 signal_detected=1;

 155

 end
end

if signal_detected ==0 %if signal not detected
 H=0;start_of_data=0;
 return
end

%Estimate Channel
% L=16; %length of channel set by standard to 15
%
% load /Receiver/preamble_2_128
% X = fft(preamble_2_128);
% X1 = [X(1:50); X(52:101)];
%
% LP=input(start_of_data-256:start_of_data-1);
% lp1=LP(1:128); %1st Long Preamble
% lp2=LP(129:256); %2nd Long Preabmle
% LP1 = fft(lp1);
% LP2 = fft(lp2);
% Y1 = [LP1(1:50); LP1(52:101)];
% Y2 = [LP2(1:50); LP2(52:101)];
% H = (Y1+ Y2)./(2*X1);
% H2(1:2:200) = H;
% H2(2:2:200) = H;
% H3 = H2(1:192);
% figure;plot(abs(H3));
% h = ifft(H3,256);
% figure;plot(abs(h));title('Channel impulse response')
% H = H3;

% xLP=preamble_2_128; % Long Preamble
% L=64; % choose L>16 to account for uncertainty in the estimated beginning of the
preamble
% X=toeplitz(xLP, [xLP(1); xLP(128:-1:128-L+2)]);
% Xinv=inv(X'*X)*X';
% h1=Xinv*LP1;figure;plot(abs(h1));
% h2=Xinv*LP2;figure;plot(abs(h2));
% h=0.5*(h1+h2);
% H=fft(h,256);
% figure;plot(abs(H));
H=ones(256,1);

 156

function [output,sent_plcp,MAC_data] = build80211b(MAC_bytes)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% build80211b.m
%
% make the IEEE 802.11b signal; only uses differential BPSK modulation
%
% Input: %
% input:
% MAC_data: data bits from MAC layer
% MAC_bytes: number of bytes of data from MAC layer
%
% Output: %
% output: modulated signal
% sent_plcp: sent plcp header bits for BER check
%
% Calls:
% LongPLCP.m to Preamble and Header
%
% Author: Keith Howland
% Created: 30 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
MAC_data = randint(1,MAC_bytes*8);
PLCP = LongPLCP(1,MAC_bytes); %make PLCP with data rate = 1 Mbps
sent_plcp = PLCP(145:192); %PLCP Header bits: 48
PPDU = [PLCP MAC_data]; %add MAC layer data after preamble and header
%gray coded binary DBPSK; no phase offset
output = dpskmod(PPDU,2,0,'gray');

 157

function [output] = CRC11b(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% LongPLCP.m
%
% create cyclic redundancy check bits
% G(x) = X^16 + X^12 + X^5 + 1
%
% Input: %
% input: PLCP header bits
%
% Output: %
% output: 16 CRC bits
%
% Calls: None
%
% Author: Keith Howland
% Created: 23 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

reg = ones(1,16); %set initial state
for i = 1:length(input)
 reg16 = xor(reg(1),input(i)); %my reg16 = X(0);
 reg5 = xor(reg(5),reg16);
 reg12 = xor(reg(12),reg16);
 %shift bits left one
 reg = [reg(2:4) reg5 reg(6:11) reg12 reg(13:16) reg16];
end

output = (reg == 0); %output is ones complement MSB sent first

%test = [0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0];

 158

function output = LongPLCP(data_rate,num_data_octets)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% LongPLCP.m
%
% make the IEEE 802.11b Preabmle and Header
%
% Input: %
% data_rate: only using 1 Mbps
% num_octets: how many bytes of MAC layer data
%
% Output: %
% output: Preamble and PLCP header
%
% Calls:
% Scrambler11b.m to make Preamble
% CRC11b.m to create cyclic redundancy check bits
%
% Author: Keith Howland
% Created: 23 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x = ones(1,128); %starting 128 bits of ones
SYNC = Scrambler11b(x); %scramble them
%%%

%static SFD field
%reverser order because right most transmitted first
SFD = [0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1];

%%
%SIGNAL field
if data_rate == 1
 SIGNAL = [0 1 0 1 0 0 0 0]; %LSB first
elseif data_rate == 2
 SIGNAL = [0 0 1 0 1 0 0 0];
elseif data_rate == 5.5
 SIGNAL = [1 1 1 0 1 1 0 0];
elseif data_rate == 11
 SIGNAL = [0 1 1 1 0 1 1 0];
end

 159

%%

%%
%calculate LENGTH field: number of microseconds to transmit PSDU
P=0;
LENGTH_prime =((num_data_octets + P)* 8)/data_rate; %page 16 of 802.11b-99
LENGTH = ceil(LENGTH_prime);
if data_rate == 11 && LENGTH - LENGTH_prime >= 8/11
 LENGTH_EXTENSION = 1;
else
 LENGTH_EXTENSION = 0;
end
LENGTH_bin = dec2bin(LENGTH,16);
LENGTH_bits = zeros(1,16); %preallocate space
for j = 1:16
 %convert each bit from string
 LENGTH_bits(1,j) = str2double(LENGTH_bin(j));
end
LENGTH = fliplr(LENGTH_bits); %LSB sent first
%%%
%%%%%%%

%%%
%%%%
%bits 2,3 are variable but don't matter now
SERVICE = [0 0 0 0 0 0 0 LENGTH_EXTENSION];
%%%
%%%%%

%%%
%%%%%%%
CRC_input = [SIGNAL SERVICE LENGTH]; %input for CRC
CRC_bits = CRC11b(CRC_input); %calculate CRC
%%%
%%%%%%%

output =[SYNC SFD SIGNAL SERVICE LENGTH CRC_bits];

 160

function [output] = Scrambler11b(input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Scrabmler11b.m
%
% Scramble bits to create IEEE 802.11b Preamble
% G(z) = Z^-7 + Z^-4 + 1
%
% Input: %
% input: all ones
%
% Output: %
% output: scrambled bits
%
% Author: Keith Howland
% Created: 23 Feb 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

output=zeros(1,length(input)); %preallocate for speed

reg = [1 1 0 1 1 0 0]; %set initial state
for i = 1:length(input)
 new = xor(reg(4),reg(7));
 %shift bits left one
 reg = [new reg([1 2 3 4 5 6])];
 % modulo 2 add output with data bit
 output(i) = xor(new,input(i));
end

 161

function [output] = deCRC(CRC_bits, CRC_input)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% deCRC.m
%
% calculate CRC bits to check for bit errors during transmission
% G(x) = X^16 + X^12 + X^5 + 1
% if received crc bis match calculated crc then good
%
% Input: %
% CRC_bits: received CRC value
% CRC_input: received signal field for crc calculation
%
% Output: %
% output: 1 - good CRC check
% 0 - bad CRC check
%
% Calls: none
%
% Author: Keith Howland
% Created: 30 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

reg = ones(1,16); %set initial state to all ones
for i = 1:length(CRC_input)
 reg16 = xor(reg(1),CRC_input(i)); %my reg16 = X(0);
 reg5 = xor(reg(5),reg16);
 reg12 = xor(reg(12),reg16);
 %shift bits left one
 reg = [reg(2:4) reg5 reg(6:11) reg12 reg(13:16) reg16];
end

%set initial state;%need to take ones complement first
sent_reg = (CRC_bits == 0);

if reg == sent_reg
 %good CRC check: received matched calculated
 output = 1;
else
 %bad CRC check
 output = 0;

 162

end

 163

function [data_rate,num_data_octets,rec_data,rec_header,CRC_result] = ...
 demodData11b(noise_signal,SIGNAL_start)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% demodData11b.m
%
% Demodulate the received signal which can only be sent using DBPSK
% then read SIGNAL field to extract header information
%
% Input: %
% noise_signal: received signal from channel
% SIGNAL_start: start index of signal field
%
% Output: %
% data_rate: received data rate from SIGNAL field
% num_data_octets: number of bytes of data sent from LENGTH field
% rec_data: demodulated data bits
% rec_header: received PLCP header bits for BER
%
% Calls:
% deCRC.m to calculate cyclic redundancy check
%
% Author: Keith Howland
% Created: 23 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%demodulate received signal
rec_signal = dpskdemod(noise_signal,2,0,'gray');

%remove preamble

rec_header = rec_signal(SIGNAL_start: SIGNAL_start+47)';%PLCP Header 48 bits
rec_data = rec_signal(SIGNAL_start +48:end);

SIGNAL = rec_header(1:8); %read SIGNAL field
MOD = rec_header(12); %type of transmission
LENGTH_EXTENSION = rec_header(16);
LENGTH = rec_header(17:32);

%%%
%%
%check cyclic redundancy check bits

 164

CRC_bits = rec_header(33:48);
CRC_input = rec_header(1:32);
CRC_result = deCRC(CRC_bits,CRC_input);
if CRC_result == 0
 %if bad return with all parameters equal to zero
 display('BAD CRC. Demodulation failed.')
 data_rate =0;
 num_data_octets =0;
 rec_data =0;
 return
end
%%%

%find data rate
if SIGNAL == [0 1 0 1 0 0 0 0]
 data_rate = 1;
elseif SIGNAL == [0 0 1 0 1 0 0 0]
 data_rate = 2;
elseif SIGNAL == [1 1 1 0 1 1 0 0]
 data_rate = 5.5;
elseif SIGNAL == [0 1 1 1 0 1 1 0]
 data_rate = 11;
else
 %if undetected bit error by CRC
 display('Demodulation failed')
 return
end
%%
LENGTH = fliplr(LENGTH);
len = bin2dec(num2str(LENGTH));

num_data_octets = floor(len * data_rate/8 - MOD) - LENGTH_EXTENSION;

 165

function [signal_detected11b,start_of_SIGNAL] = synch11b(input,Th)

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% synch11b.m
%
% Synchronize to received IEEE 802.11b signal using cross-correlation
% witht the known preamble; determine start of data sample index
%
% Input: %
% input: received signal sample values
% Th: decision threshold
%
% Output: %
% signal_deteced11b: 1 - 802.11b signal was detected
% 0 - 802.11b signal was not detected
% start_of_SIGNAL: sample index of start of SIGNAL field
%
% Calls: None
%
% Author: Keith Howland
% Created: 25 May 07
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load preamble; %pre-saved preamble for cross correlation
p_corr = filter(preamble,1,input); %do the correlation
preamble_power = preamble *preamble'; %preamble power
p_corr = p_corr/ preamble_power*10; %normalize wrt preamble power
mag_p_corr = p_corr .* conj(p_corr); %get magnitude
%figure;plot(mag_p_corr);title('Preamble Correlation')

[v,ind1] = max(mag_p_corr);

if v > Th
 signal_detected11b = 1;
else
 %no signal detected, so set all parameters to zero
 %disp('not 802.11b')
 signal_detected11b =0;
 start_of_SIGNAL =0;
 return
end

 166

%start of data
start_of_SFD = ind1 +1;
start_of_SIGNAL = start_of_SFD + 16;

 167

LIST OF REFERENCES

[1] Institute of Electrical and Electronics Engineers, 802.11a, Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
High-Speed Physical Layer Extension in the 5 GHz Band, 12 June 2003.
http://ieeexplorer.ieee.org, last accessed 15 August 2007.

[2] Institute of Electrical and Electronics Engineers, 802.11b, Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
Higher-Speed Physical Layer Extension in the 2.4 GHz Band, 16 September
1999. http://ieeexplorer.ieee.org, last accessed 15 August 2007.

[3] A. Ghosh, D. Walter, J. Andrews, R. Chen, “Broadband wireless access with
WiMax/802.16: Current Performance Benchmarks and Future Potential,”
IEEE Communications Magazine, vol. 43, pp. 129 – 136, February 2005.

[4] T. Schmidl and D. Cox, “Robust frequency and timing synchronization for
OFDM,” IEEE Trans. on Communications, vol. 45, no. 12, pp. 1613– 1621,
December 1997.

[5] J. van de Beek, M. Sandell, P. Borjesson, “ML estimation of time and
frequency offset in OFDM systems,” IEEE Trans. on Signal Processing, vol.
45, no. 7, pp. 1800-1805, July 1997.

[6] P. Moose, “A technique for orthogonal frequency division multiplexing
frequency offset correction,” IEEE Trans. On Communications, vol. 42, no.
10, pp. 2908-2914, October 1994.

[7] Larsson, G. Liu, J. Li, G. Giannakis, “Joint symbol timing and channel
estimation for OFDM base WLANs,” IEEE Communications Letters, vol. 5,
no. 8, pp. 325-327, August 2001.

[8] K. Yip, T. Ng and Y. Wu, “Impacts of multipath fading on the timing
synchronization of IEEE 802.11a wireless LANs,” in Proc. IEEE
International Conference on Communications, New York, New York, May
2002, pp. 517 – 521.

[9] Y. Wu, K. Yip, T. Ng, E. Serpdin, “Maximum-likelihood symbol
synchronization for IEEE 802.11a WLANs in unknown frequency-selective
fading channels,” IEEE Trans. on Wireless Communications, vol. 4, no. 6, pp.
2751-2763, November 2005.

[10] T. Rappaport, Wireless Communications, pp. 197-210, Prentice Hall, 2002.

[11] J. Proakis, Digital Communications, pp. 160-163, McGraw Hill, 2001.

 168

[12] Institute of Electrical and Electronics Engineers, 802.16, Air Interface For
Fixed Broadband Wireless Access Systems, 1 October 2004.
http://ieeexplorer.ieee.org, last accessed 15 August 2007.

[13] R. Cristi, Modern Digital Signal Processing, pp.111-113, Brooks/Cole, 2004.

[14] H. Van Trees, Detection, Estimation, and Modulation Theory, pp. 19-40, John
Wiley and Sons, 1968.

[15] R. Hippenstiel, Detection Theory, pp. 67-96, CRC Press, 2002.

 169

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chair, Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Professor Murali Tummala
Naval Postgraduate School
Monterey, California

5. Professor John McEachen
Naval Postgraduate School
Monterey, California

